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Abstract

We outline a parametric model of a system of unmanned aerial vehicles (UAVs) on a mission. The
UAVs have to accomplish their mission composed of several tasks as efficiently as possible, while satisfying
a heterogeneous set of physical and communication constraints. UAVs can be viewed as an example of a
highly dynamic multi-agent system (MAS). These UAVs may be required to autonomously make deci-
stons, communicate, coordinate, adapt to rapidly changing environments and efficiently perform their tasks
in real-time and under the limitations of local, incomplete and/or noisy knowledge of their surroundings. In
particular, an individual UAV in our work can be viewed as an agent: it is autonomous, goal-driven, can
affect and be affected by its environment, has its own behavior strategy, can communicate with its peers, and
may find it beneficial to cooperate and coordinate not only to avoid collisions, but also in order to accomplish
its set of tasks more effectively. We focus herein on two aspects of agent-based modeling of UAVs: modeling
autonomous decision-making of the individual vehicles viewed as autonomous agents, and different models of

UAYV coordination.
Keywords:

1 Introduction & Motivation

A collection of Unmanned Aerial Vehicles (UAVs)
on a mission provides an ideal framework for iden-
tifying, modeling and analyzing many interesting
paradigms, design parameters and solution strategies
applicable not only to autonomous unmanned vehi-
cles, but to Multi-Agent Systems (MAS) in gen-
eral. UAVs are finding their application in a variety
of contexts, e.g., they are being increasingly used for
various surveillance, reconnaissance, and target-and-
rescue missions. These UAVs carry sophisticated pay-
loads, as they are designed to accomplish increasingly
complex, multi-task missions. In particular, a typical
UAYV is equipped with certain sensors such as, e.g.,
radars. With these sensors, each UAV probes its envi-
ronment and forms a (local) “picture of the world” on
which its future actions may need to be based. A UAV
is also equipped with some communication capabilities,
that enable it to communicate with other UAVs and/or

*Contact author

unmanned aerial vehicles, agent-based modeling, agent coordination, agent autonomy

the ground or satellite control. This communication
enables a UAV to have an access to the information
that is not local to it - that is, the information not
directly accessible to UAV’s sensors.

While trying to accomplish their mission (typically,
a set of pre-defined and/or dynamically arising tasks
as in the examples above), these UAVs need to respect
a heterogeneous set of constraints on their physical
and communication resources. The UAVs also need
to be able to communicate and cooperate with each
other. Their cooperation can range from merely as-
suring that they stay out of each other’s way (colli-
sion avoidance) to enabling themselves to adaptively
and dynamically divide-and-conquer their tasks. This
latter, higher form of cooperation (coordination) we
also call goal-driven cooperation (respectively, coordi-
nation).

Not all kinds of UAVs can be reasonably consid-
ered agents; e.g., those that are remotely controlled



throughout their mission would not qualify for (au-
tonomous) agents in the usual sense. However, for
the reasons of system scalability, dependability and
robustness, increasingly complex and autonomous un-
manned vehicles are being studied, designed and man-
ufactured. We are interested in UAVs that are not
remotely controlled and that have the ability to make
their own decisions in real time. This ability of au-
tonomous decision making would “qualify” UAVs to be
considered autonomous agents in the usual, computer
science sense of the word.! We are also assuming either
no central control, or only a limited central control. In
particular, the knowledge of the world that each UAV
possesses is, in general, assumed to be local, possibly
notsy, to vary with time, and to be augmentable, at a
certain cost, via communication with other UAVs.

Some of the problems that have been extensively
studied in the context of UAVs include motion plan-
ning and conflict detection and resolution (see, e.g.,
[BIC], [KUC], or [PAL]). What has drawn consider-
ably less attention is modeling and analysis of the
task-driven, goal-oriented behaviors of UAVs viewed as
agents. Herein, we focus on some critical agent-based
modeling paradigms applied to UAVs, namely, mod-
els of agent-to-agent coordination and the individual
agent autonomy.

The rest of the paper is organized as follows. In
82, we give a high-level problem formulation, intro-
duce some terminology, and reflect on some of the main
assumptions of our modeling framework. The central
part of the paper, section §3, is dedicated to identi-
fying and discussing some of the most crucial design
parameters of the model - those pertaining to mod-
eling tasks, and UAV coordination and autonomous
decision-making. We outline some possible extensions
of the modeling framework in §4, and briefly summa-
rize in §5.

2 Problem Formulation

In this section, we first briefly discuss the model at a
high level: what are the UAVs trying to accomplish,
both individually and as a single multi-agent system
with a common goal, how we model these goals, and
how we model UAVs strategies and mechanisms for
accomplishing their goals. We also introduce the nec-
essary terminology along the way. We conclude the
section with a brief discussion about the main assump-

tions made in our model, and some of their implica-
tions.

A collection of N UAVs needs to accomplish a
certain complex mission - such as any combination of
surveillance, reconnaissance, target detection and/or
target identification. We model this mission with a
collection of M interest points (IPs). An interest
point is a semantic extension of the more common no-
tion of a target - in addition to targets proper, an IP
may also refer to, e.g., a small local region of inter-
est, that may or may not include “real targets”, but is
nonetheless worth while exploring. Each interest point
j has a dynamically changing value associated with it,
IL;(t). An IP may be static or mobile. A mobile IP j,
at any time step t, is completely and uniquely specified
by its position and velocity vectors, v;(t) and &;(t), re-
spectively, and its value II;(t). A UAV V; is driven by
the desire to increase its own utility, U;, by consum-
ing as much of value of various IPs as possible. The
total amount of value is assumed to be bounded at all
times. Consequently, the UAVs may end up compet-
ing for this limited resource. The coordination model
describes how much UAVs cooperate and divide-and-
conquer the IPs in order to function efficiently as a
system.

At one extreme, if there is no coordination, each
UAV acts entirely autonomously and, assuming no
central control or other outside mechanisms, selfishly.
At another extreme, in the leader-based coordination
models, the UAVs that are not leaders obey their re-
spective leaders, thereby sacrificing (temporarily or
permanently) their autonomy as agents. Assuming un-
bounded communication radius for the UAV-to-UAV
communication, a single-leader model becomes equiva-
lent to a centralized model, with a possibly incomplete
and/or noisy knowledge of the “world”. If, however,
there are several leaders and different groups of “fol-
lowers” associated with each leader, and if the radius of
communication is non-trivially finite, then one may ex-
pect to encounter many of the fundamental challenges
in distributed computation and communication, such
as dynamic leader election and group formation prob-
lems, distributed consensus reaching, limits to local
individual or group knowledge and their implications,
and other issues (see, e.g., [TEL]).

Thus, from an individual UAV’s perspective, the
goal is to maximize its own utility, by visiting as many
interest points and consuming as much of their value as
possible. This is accomplished by following a certain

1We leave aside the fact that there is no general agreement within the agent research community on what ezactly qualifies an
entity (such as a computer program, or a UAV with its sensors, effectors and software) to be considered an agent [FRA].



either fixed or dynamically changing (adaptable) in-
dividual behavior strategy. This strategy can be spec-
ified by an appropriate individual behavior function,
0;, that UAV V; follows as long as there is no outside
signal telling the UAV it should start doing something
else. An example of such outside signal is a request to
a given UAV to join a newly formed group; if such re-
quest comes from a leader whose supremacy in author-
ity is recognized, the follower UAV will have to aban-
don its current behavior and comply with the leader’s
desires, thereby, in a sense, giving up its individual
autonomy.

From a system’s perspective, on the other hand, it
is the successfulness of the entire mission that matters
- not the gratification of individual agents. How to
translate the individual utilities into the global utility
maximization in the framework where, in general, both
cooperation and competition are to be expected, is a
challenging incentive engineering problem [CAN]. We
address these issues elsewhere, where our constraint
optimization based framework for modeling UAV mis-
sions is the central theme [TOS].

We conclude this section with stating some basic
assumptions made both in the agent-based UAV model
outlined herein, and in our simulation platform based
on this model®>. One important assumption pertains
to the nature of time. First, the time steps are dis-
crete. Second, we assume the existence of the global
clock and, therefore, global time. The global clock could
be provided, say, by a central satellite-based control,
and we also assume that all UAVs at any time have an
instantaneous access to this global clock. The assump-
tion about global time is (tacitly) made in most of the
work on MAS, where the existence of a global clock is
taken for granted. Without it, modeling and analysis
of UAV-like distributed systems becomes considerably
more difficult. The UAVs are assumed to communicate
with one another (or, when applicable, with the central
control) exclusively via message passing. We also as-
sume that all communication is perfectly synchronous.
It is well-known that the more realistic assumption of
asynchronous communication renders many important
distributed coordination and agreement problems for-
mally undecidable [TEL].

3 Modeling UAVs’ Tasks,
Coordination and Autonomy

We now discuss in some detail what we consider to be
the most critical design parameters in our agent-based
model of UAVs on a multi-task mission. The param-
eters of interest include ratio of the number of UAVs
to the number of IPs, sensor ranges, communication
ranges, a choice of a coordination model and strategy,
a model of UAV’s individual behavior strategy (or, in
heterogeneous scenarios where UAVs are distinguish-
able, strategies), models of both individual and sys-
tem adaptability®, and a choice of the model of UAVs’
knowledge of their environment - such as whether this
knowledge is local or global, perfect or noisy, etc.

Due to space limitations, we focus herein on three
issues: quantitative models of interest points, models
of individual UAV’s autonomy, and UAV coordination
models.

3.1 A Simple Model of UAV Tasks

Our model of UAVs on a mission emphasizes the goal-
orientedness of UAVs as agents. UAVs are not merely
flying around and trying to avoid colliding with one
another or with other obstacles, but are actually try-
ing to accomplish some set of tasks. Thus our model is
trying to capture paradigms beyond the usual motion
planning and obstacle avoidance problems. Mathemat-
ically, rather than having merely to solve an instance
of Distributed Constraint Satisfaction (DCS) prob-
lem* [YOK], our UAVs have, in addition to obeying
a number of physical and communication constraints,
also an objective or utility function that they strive to
maximize. We discuss some possible ways of trans-
lating this desire to maximize utility into UAV’s indi-
vidual decision-making strategies in the next section.
First, however, we outline our quantitative model of
UAVs’ tasks.

As our goal is to capture UAVs acting in possi-
bly heterogeneous and highly dynamic environments,
where not all tasks need be (i) identical, or (ii) known
ahead of time, and where, in general, no central control
is available to provide each UAV with the information
about each of the tasks, a natural starting point in our
quest to quantify the mission successfulness is to spec-
ify a simple quantitative notion of a task. We also need

2For more on our UAV simulation and some experimental results, see [JAN].

3By adaptability we mean the ability to change the individual strategies and coordination models based on observed changes in
the environment, including but not limited to any form of a feedback, such as an appropriate payoff, received from the environment.

4DCS by itself is, in general, computationally intractable, as even its centralized version, being a nontrivial generalization of the

well-known Satisfiability problem, is NP-hard.



a simple model for possible heterogeneity of different
tasks. The basic task to be serviced in our model is an
interest point.

Since not all tasks, or interest points, are necessar-
ily the same, one simple way to capture this hetero-
geneity is to assign a time-dependent value function,
I1;(t), to each interest point j, 1 < j < M. When
a UAV discovers an IP, it gets attracted by its value.
Assuming a UAV is aware of two or more IPs at a
given time step (by either having sensed those IPs, or
because some other UAV has broadcast the IPs’ loca-
tions and (estimated) values), the UAV needs to de-
cide which IP is currently most attractive to it. The
exception to this general rule is when, in task-driven
coordination models, the UAV gets instructions from
another UAV or the ground or satellite control what it
is supposed to do next.

When a UAV arrives to an IP’s location (or within
a specified small distance from it), it starts consuming
its value, thereby increasing its own utility or payoff.
This value is consumed at some rate, d. In our simula-
tions (see [JAN]), d was assumed to be a constant; in
general, various models where d may depend on time,
UAV’s index ¢, and/or IP’s index j, are worth consid-
ering.

To illustrate the general usefulness of the concept
of IPs and their value functions, we sketch two special
cases as examples.

First, let’s assume that UAVs are on a surveillance
mission. That is, each IP (or a set of IPs) needs to
be revisited repeatedly. Some regions (represented by
IPs) may be so important that they require presence
(i.e., one or more UAVs essentially hovering or cir-
cling in their vicinity) at all times. The simple way
to represent that in our model is to make the function
I1;(t) independent of time: even though some UAVs
are “consuming” the value of such an IP, while those
UAVs’ utility is increasing, the IP’s value actually stay
the same, thereby assuring that those IPs keep their
attractiveness. If some IPs need to be revisited peri-
odically but do not require ceaseless surveillance, then
the function II;(¢) of such an IP j can be made peri-
odic: once a UAV arrives to j, the value starts going
down until UAV leaves; after some number of time
steps, the value jumps back up again, thereby mak-
ing j (more) attractive again, and thus prompting the
UAVs to come back to this IP.

The second example is to consider an IP that is
an actual target. Once its location has been discov-
ered, one or more UAVs approach this target. Once
a particular UAV, V;, gets within some pre-specified

distance from the target, with probability p, the UAV
consumes the target’s entire value at once, with prob-
ability p;. That is, II; of this IP goes to zero in one
time step, and the UAV’s payoff increases accordingly
with probability p;, whereas, with probability 1 — p;,
Vi “misses” the target, so that the value II; remains
unaltered. Whether the UAV V; stays “at the tar-
get” j for one time step irrespective of the outcome,
or for as many time steps as is needed for a success to
occur, are different possibilities that can be modeled
with different choices of the UAV’s individual behavior
functions.

What are, then, the general properties of function
II, and what parameters does it depend upon? At time
step t + 1, the value IL;(t + 1) of IP j can be reason-
ably expected to depend on the value at the previous
time step, II;(¢), the number of UAVs servicing this
IP at time ¢, that we denote by n;(t), and the value
consumption rate, d. In addition, the value function
may explicitly depend on time. For instance, in the
surveillance example above, the parameters II;(t), d
and n;(t) alone cannot capture a jump in II;(¢ + 1)
value due to some form of aging. Thus, the general
form of the IP value functions we are interested in can
be written as

for some integer-valued or real-valued function F. A

particular choice of II that we have extensively exper-
imented with [JAN] is
IZ(t+1) = maz{llj(t) — d-n;(t), 0},

where d is an integer constant. While this particular
IP value function is always nonnegative, we also con-
sider II(¢) that can be negative; such value functions
are useful whenever one wishes to model certain re-
gions that UAVs should strive to avoid - such as, e.g.,
dangerous regions in the mission area of little actual
value. Similarly, not all IP value functions need be
nonincreasing in time like II7 is; depending on what
kind of IPs are modeled, value functions may be cho-
sen to be, e.g., periodic or nondecreasing in time, and

the like.

3.2 Models of UAV Autonomy

In order for any type of intelligent vehicles to be con-
sidered autonomous agents, they have to be capable
of autonomous decision making without direct assis-
tance of a human or other outside operator. We out-
line a simple model of autonomy applicable to UAVs
that would render UAVs proper autonomous agents,
albeit of a perhaps fairly restricted kind. UAVs are



goal-driven entities. They fulfill their goals by servic-
ing tasks. In our modeling framework, tasks are given
as interest points and UAVs, loosely speaking, strive
to consume as much of interest points’ value as fast
as possible. As we assume that a single UAV can con-
sume value from at most one IP at any single time step,
the question arises: among several candidate IPs, how
should a UAV choose in what order it is to visit these
IPs? Therefore, it can be argued that each UAV faces
an online scheduling problem. For simplicity, we con-
sider a simplified version of dynamic online scheduling,
and only ask, given a set of interest points whose cur-
rent positions and (estimated) values are known to a
particular UAV, which IP among those points should
the UAV select to visit first?

We model the individual UAV’s autonomous
decision-making with UAV’s individual behavior func-
tions, ©;. Given a set of IPs with their current po-
sitions and values®, a UAV V; evaluates its behavior
function ©; that returns the index j* of the IP that,
if the UAV selects that IP as its next task to service,
this choice is expected or to maximize the estimated
increase in UAV’s utility. Therefore, each UAV is as-
sumed to behave greedily. However, a great variety of
greedy strategies can be specified via different choices
of the functions ©;.

Some variables that individual behavior functions
can be expected to depend on are the UAV’s distance
from the given IP, the IP’s current value (or its esti-
mate), and the estimated competition for that IP and
its value - viz., the number of other UAVs in the IP’s
vicinity. Let () be the position of IP j at time ¢,
and let n;, be the total number of UAVs within the
distance r from IP j. Then one class of models of the
i-th UAV’s target selection strategy is specified by
©i(t) = arg{mazi<j<nm G, [|zi —b;lf,njr, )}
where G is an integer-valued function that is increas-
ing in II; and nonincreasing in distance of the UAV
from the IP j given by ||z;(¢t) — %;(¢)||. This function
specifies what IP should UAV V; pick as the estimated
short-term optimal choice. Notice that, for simplicity,
relative velocity of a UAV with respect to the inter-
est point is not taken into account. One example of
a simple greedy individual behavior that fits the given
description is

I (t)—nj »(t)-d
Oi(t) = arg{maz: <j<m[TE B,

where it is assumed that the minimal distance of any
UAYV from any IP is strictly positive.

Everything said thus far about UAVs’ individual
behavior strategies rests on the assumption that each
UAV acts strictly selfishly, and largely independently
(except for the dependence of ©; on n;,) from what
other UAVs do. Once UAV-to-UAV communication
and coordination are taken into account, modeling
UAV’s autonomous agent behavior becomes more com-
plex. In particular, in addition to the already men-
tioned parameters, each ©;(¢t) would be expected to
also depend on the set of messages that i-th UAV has
received from other UAVs at time steps t' < t. We
discuss some models of UAV coordination next.

3.3 Models of UAV Coordination

We now discuss some possible design choices for mod-
eling UAV-to-UAV coordination.

At one extreme, a single UAV becomes the “group
leader”, and this leader then broadcasts to other UAVs
what it wants them to do. Typically, the leader is the
first UAV that detects one or more IPs in a particu-
lar region of the mission area. In case of a tie (where
two or more UAVs announce their claim to leadership
simultaneously), the tie is broken according to some
pre-specified rule (e.g., the UAV with the lowest index
wins). Assuming the UAV-to-UAV communication ra-
dius is infinite®, and if the bandwidth availability is
not an issue, this, single-leader scenario is very similar
to a centralized control model. The one difference is
that the leader’s knowledge about the environment, in
general, can be expected to be incomplete and/or im-
perfect (i.e., noisy), and that this knowledge is likely
to dynamically change in often unpredictable ways.

While the single-leader model is perhaps the sim-
plest to analyze and relatively easy to simulate, it also
suffers from a number of shortcomings. These short-
comings can be divided into two general categories.
One category are the usual problems with centralized
or quasi-centralized control models, such as “ungrace-
ful” degradation (due to a single point of failure), and
the possible communication bottleneck at the leader
node. The second category of potential troubles is pe-
culiar to any situation where a single leader is itself
“just another agent”, whose sensors or communica-
tion links could be unreliable, whose local and possibly
noisy “picture of the world” is imposed onto everyone
else even though perhaps other agents have more accu-
rate knowledge or more reliable links, and the like. Any

5In case of mobile targets, current velocities would be also needed.
6The infinite communication range assumption applies whenever this range is unbounded for all practical purposes - which is the
case if, for example, the diameter of the entire mission area is less than the diameter of the UAV-to-UAV communication range.



satisfactory solution, therefore, has to provide mecha-
nisms for UAVs not only to “talk back” to their lead-
ers, but also for the ad hoc network of UAVs to be
able to detect possible troubles with the leader, and, if
need be, dynamically reconfigure itself and elect a new
leader.

At the other extreme, we consider models where
there is no explicit task-driven coordination. In these
models, not only is the whole group of UAVs au-
tonomous, but also each individual UAV within this
system acts as an entirely autonomous agent. In other
words, each UAV simply follows its own strategy by re-
computing its individual behavior function, irrespective
of what others do. This individual behavior function is
the agent’s strategy for maximizing its own individual
payoff. The UAVs may still wish to communicate with
one another, but there is no explicit coordination as to
how to accomplish the mission more efficiently, how to
divide-and-conquer tasks, etc. While, in the context
of individual utility maximization this situation may
be considered a default scenario, we view it as an ex-
treme in the more appropriate, joint utility framework,
where all UAVs have a single mission to accomplish,
and where the successfulness of the entire system in
accomplishing that mission - rather than that of the
individual vehicles - is what matters [TOS]. Thus the
“no goal-driven cooperation” scenario can serve as a
yard stick with respect to which the effectiveness of
various coordination strategies can be measured.

In between the two tentative extremes - the leader-
based coordination on one, and the no explicit coordi-
nation model on the other hand - are many intermedi-
ate cases, and many possible coordination strategies.
These intermediate coordination models are, typically,
more flexible but also more complex than the leader-
based approaches. We refer to this broad class of in-
termediate coordination strategies as leaderless coordi-
nation models.”

Let us summarize regarding the possible choices of
a coordination model, and the tradeoffs these choices
entail. Without any explicit goal-driven coordination,
each UAV follows its own, pre-specified (but possibly
adaptable) individual behavior strategy. The param-
eters to this strategy, encapsulated in each UAV’s in-
dividual behavior function, are provided by the envi-
ronment, i.e. by the (possibly noisy) data about the
environment gathered by the vehicle’s sensors, by the
UAV’s knowledge of its “internal state”, and by the
communication with other UAVs and/or the ground
control that helps the UAV navigate, detect and avoid

possible collisions, ant the like. Goal-driven coordi-
nation, then, entails different UAVs occasionally hav-
ing to, temporarily or permanently, abandon their in-
dividual behavior strategies, and to begin doing what
they have reached an agreement with other UAVs they
ought to be doing. In general, coordination should aid
the system to do better, and therefore any reasonable
coordination strategy should be expected, given the
same mission and the same set of tasks and other envi-
ronment parameters, to perform at least as well as the
corresponding coordination-free, purely autonomous
individual behavior strategy. This intuition has been
confirmed in some restricted scenarios that we have
simulated [JAN]. We briefly argue in favor of a broader
validity of our claim regarding the expected benefits of
the goal-driven coordination. Assuming perfectly re-
liable communication and agent’s perfect knowledge
of the environment - two typically unrealistic assump-
tions in practice - any model of goal-oriented coordina-
tion implies, at the very least, some knowledge sharing,
i.e., more information available to each UAV than what
is provided by the UAV’s sensors and communication
about possible conflicts alone. More information, on
the other hand (and leaving aside for the moment the
issues of communication, storage and processing over-
heads), should not make the system or its components
do any worse than without that additional informa-
tion. Once the assumptions of perfect knowledge about
the IPs and perfect communication links are dropped,
however, the problem of choosing the right coordina-
tion strategy becomes both intuitively and analytically
overwhelming, and therefore our view is that, in that
case, there is no substitute for computer simulation
and intense experimentation in various scenarios.

We also point out that, irrespective of the assump-
tions about reliability of communication links and
UAVs’ sensors, any coordination necessarily requires
more communication - and, in the real world, commu-
nication does not come for free. It also means that
the agents have to execute an appropriate coordina-
tion mechanism, which may mean a considerable com-
putational overhead - possibly prohibitively costly in a
real-time application. Thus, in general, one can expect
a tradeoff between the amount and nature of coordi-
nation, and the extra cost of this coordination. Hence,
for example, in those scenarios where goal-driven co-
ordination is expected or experimentally shown to be
of a little benefit, by the Occam’s Razor principle, the
simpler and less costly strategies with no explicit co-
ordination would likely be preferable.

7Our UAV simulator has an implementation of a variant of each of these three categories of coordination models [JAN].



4  Some Future Plans

We now outline some possible extensions of the agent-
based modeling framework presented in the previous
sections. Regarding the nature of tasks, in addition
to the interest points’ values, we consider introducing
different IP types. This naturally extends the model
so that it can capture more heterogeneous scenarios,
where both UAVs and IPs are distinguishable and, in
particular, the UAVs become specialized: a UAV can
handle only those IPs that are of a compatible type.

An important remark, leading to a considerable
model extension, is that currently, for each IP j, its
II,; is assumed to represent the j’s true (i.e., objec-
tive) value, irrespective of which UAV may see IP j,
and from how far away. That is, the tacit assump-
tion is that, once an IP is discovered by the UAVs, all
the UAVs who are aware of this IP’s existence imme-
diately also know its ezact current value. This perfect
knowledge assumption can be appropriately relaxed for
the sake of the model’s realism. The more reasonable
assumption is that each UAV has its own, local and
imperfect estimate of II; of those IPs j that the UAV
knows about. In case of imperfect and/or incomplete
local knowledge of the tasks, each UAV’s individual
behavior function, ©;, naturally becomes probabilistic,
i.e., UAVs are required to make decisions in the pres-
ence of uncertainty. In particular, ©; is now a function
of an estimated attractiveness of each IP j that UAV V;
is aware of, rather than of the exact actual value II; as
this actual value, in general, need not be known to V;.
Ability of decision-making under uncertainty is often
considered one of the hallmarks of most autonomous
agents one finds in the literature [PAR].

5 Summary

We have presented an agent-based approach to model-
ing UAVs on a mission made of multiple tasks. Assum-
ing no remote control, the UAVs share many proper-
ties characteristic of autonomous agents, such as goal-
orientedness, pro-activeness, the ability to affect and
be affected by the environment, autonomous decision-
making under uncertainty, and peer-to-peer communi-
cation, coordination and cooperation. The current em-
phasis of our modeling is on some simple yet interesting
classes of autonomous agent behavior strategies and of
goal-driven agent coordination. It is our hope that

future extensions and improvements of the modeling
framework presented herewith, and simulations guided
by similar models, will increase the understanding and
enhance future design of both autonomous UAVs and
other intelligent vehicles, and multi-agent systems in
general.
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