Characterizing Configuration Spaces of Simple
Threshold Cellular Automata

Predrag T. Tosic and Gul A. Agha

Open Systems Laboratory, Department of Computer Science
University of Illinois at Urbana-Champaign
Mailing address: Siebel Center for Computer Science,
201 N. Goodwin Ave., Urbana, IL 61801, USA
p-tosic@cs.uiuc.edu, agha@cs.uiuc.edu

Abstract. We study herewith the simple threshold cellular automata (CA), as
perhaps the simplest broad class of CA with non-additive (i.e., non-linear and
non-affine) local update rules. We characterize all possible computations of the
most interesting rule for such CA, namely, the Majority (MAJ) rule, both in
the classical, parallel CA case, and in case of the corresponding sequential CA
where the nodes update sequentially, one at a time. We compare and contrast the
configuration spaces of arbitrary simple threshold automata in those two cases,
and point out that some parallel threshold CA cannot be simulated by any of
their sequential counterparts. We show that the temporal cycles exist only in case
of (some) parallel simple threshold CA, but can never take place in sequential
threshold CA. We also show that most threshold CA have very few fixed point
configurations and few (if any) cycle configurations, and that, while the MAJ
sequential and parallel CA may have many fixed points, nonetheless “almost all”
configurations, in both parallel and sequential cases, are transient states.

1 Introduction and Motivation

Cellular automata (CA) were originally introduced as an abstract mathematical model
of the behavior of biological systems capable of self-reproduction [15]. Subsequently,
variants of CA have been extensively studied in a great variety of application domains,
predominantly in the context of complex physical or biological systems and their dy-
namics (e.g., [20, 21, 22]). However, CA can also be viewed as an abstraction of mas-
sively parallel computers (e.g, [7]). Herein, we study a particular simple yet nontrivial
class of CA from a computer science perspective. This class are the threshold cellular
automata. In the context of such CA, we shall first compare and contrast the con-
figuration spaces of the classical, concurrent CA and their sequential analogues. We
will then pick a particular threshold node update rule, and fully characterize possible
computations in both parallel and sequential cases for the one-dimensional automata.
Cellular automata CA are an abstract computational model of fine-grain paral-
lelism [7], in that the elementary operations executed at each node are rather simple
and hence comparable to the basic operations performed by the computer hardware. In
a classical, that is, concurrently executing CA, whether finite or infinite, all the nodes
execute their operations logically simultaneously: the state of a node x; at time step

t + 1 is some simple function of the states (i) of the node x; itself, and (ii) of a set of
its pre-specified neighbors, at time ¢.

We consider herewith the sequential version of CA, heretofore abridged to SCA,
and compare such sequential CA with the classical, parallel (concurrent) CA. In
particular, we show that there are 1-D CA with very simple node state update rules that
cannot be simulated by any comparable SCA, irrespective of the node update ordering.

We also fully characterize the possible computations of the most interesting case of
threshold cellular automata, namely, the (S)CA with the Majority node update rule.

An important remark is that we use the terms parallel and concurrent as synonyms
throughout the paper. This is perhaps not the most standard convention, but we are
not alone in not making the distinction between the two terms (cf. discussion in [16]).
Moreover, by a parallel (equivalently, concurrent) computation we shall mean actions
of several processing units that are carried out logically (if not necessarily physically)
simultaneously. In particular, when referring to parallel or concurrent computation,
we do assume a perfect synchrony.

2 Cellular Automata and Types of Their Configurations

We follow [7] and define classical (that is, synchronous and concurrent) CA in two
steps: by first defining the notion of a cellular space, and subsequently that of a
cellular automaton defined over an appropriate cellular space.

Definition 1: A Cellular Space, I, is an ordered pair (G,Q) where G is
a regular graph (finite or infinite), with each node labeled with a distinct integer, and
Q@ is a finite set of states that has at least two elements, one of which being the special
quiescent state, denoted by 0.

We denote the set of integer labels of the nodes (vertices) in I" by L.

Definition 2: A Cellular Automaton (CA), A, is an ordered triple (I, N, M)
where I' isa cellular space, N isa fundamental neighborhood, and M is a finite
state machine such that the input alphabet of M is Q!V!, and the local transition
function (update rule) for each node is of the form § : QIN+1 — @ for CA with
memory, and ¢ : Q!N — @ for memoryless CA.

Some of our results pertain to a comparison and contrast between the classical,
concurrent threshold CA and their sequential counterparts, the threshold SCA.

Definition 3: A Sequential Cellular Automaton (SCA) S is an ordered quadruple
(I, N, M, s), where Iy N and M are as in Def. 2, and s is a sequence, finite or infinite,
all of whose elements are drawn from the set L of integers used in labeling the vertices
of I'. The sequence s is specifying the sequential ordering according to which an
SCA’s nodes update their states, one at a time.

However, when comparing and contrasting the concurrent threshold CA with their
sequential counterparts, rather than making a comparison between a given CA with a
particular SCA, we compare the parallel CA computations with the computations of
the corresponding SCA for all possible sequences of node updates. To that end, the
following convenient terminology is introduced:

Definition 4: A Nondeterministic Interleavings Cellular Automaton (NICA) I is
defined to be the union of all sequential automata S whose first three components, I, N

and M, are fixed. Thatis, | = U (I, N, M, s), where the meanings of I', N, M, and
s are the same as before, and the union is taken over all (finite and infinite) sequences
s:{1,2,3,...} = L (where L is the set of integer labels of the nodes in I").

Since our goal is to characterize all possible computations of parallel and sequential
threshold CA, a (discrete) dynamical system view of CA will be useful. A phase space
of a dynamical system is a (finite or infinite, as appropriate) directed graph where the
vertices are the global configurations (or global states) of the system, and directed
edges correspond to possible transitions from one global state to another. We now define
the fundamental, qualitatively distinct types of (global) configurations that a classical
(parallel) cellular automaton can find itself in.

Definition 5: A fixed point (FP) is a configuration in the phase space of a CA such
that, once the CA reaches this configuration, it stays there forever. A (proper) cycle
configuration (CC) is a state that, if once reached, will be revisited infinitely often with
a fixed, finite period of 2 or greater. A transient configuration (TC) is a state that, once
reached, is never going to be revisited again.

In particular, FPs are a special, degenerate case of recurrent states whose period
is 1. Due to their deterministic evolution, any configuration of a classical, parallel CA
belongs to exactly one of these basic configuration types, i.e., it is a FP, a proper CC,
or a TC. On the other hand, if one considers sequential CA so that arbitrary node
update orderings are permitted, that is, if one considers NICA automata, then, given the
underlying cellular space and the local update rule, the resulting phase space configura-
tions, due to nondeterminism that results from different choices of possible sequences
of node updates, are more complicated. In a particular SCA, a cycle configuration is
any configuration revisited infinitely often - but the period between different consecu-
tive visits, assuming an arbitrary sequence s of node updates, need not be fixed. We call
a global configuration that is revisited only finitely many times (under a given ordering
s) quasi-cyclic. Similarly, a quasi-fixed point is a SCA configuration such that, once
the dynamics reaches this configuration, it stays there “for a while” (i.e., for some finite
number of sequential node update steps), and then leaves. For example, a configuration
of a SCA can be simultaneously a (quasi-)FP and a (quasi-)CC (see, e.g., the example
in [19]). For simplicity, heretofore we shall refer to a configuration = of a NICA as a
pseudo fixed point if there exists some infinite sequence of node updates s such that
x is a FP in the usual sense when the corresponding SCA’s nodes update according to
the ordering s. A global configuration of a NICA is a proper FP iff it is a fixed point
of each corresponding SCA, that is, for every sequence of node updates s. Similarly,
we consider a global configuration y of a NICA to be a cycle state, if there exists an
infinite sequence of the node updates ¢ such that, if the corresponding SCA’s nodes
update according to s, then y is a recurrent state and, moreover, y is not a proper FP.
Thus, in general, a global configuration of a NICA automaton can be simultaneously a
(pseudo) FP, a CC and a TC (with respect to different node update sequences s)!.

! When the allowable sequences of node updates s : {1,2,3,...} — L are required to be
infinite and fair so that, in particular, every (infinite) tail s : {n,n+1,n+2,..} =L is
onto L, then pseudo fi xed points and proper fi xed points in NICA can be shown to coincide
with one another and, moreover, with the “ordinary” FPs for parallel CA. For the special case
when L is finite and s is required to be an ad infi nitum repeated permutation see, e.g., [3, 4].

Definition 6: A 1-D cellular automaton of radius » (r > 1) is a CA defined
over a one-dimensional string of nodes, such that each node’s next state depends on the
current states of its neighbors to the left and to the right that are no more than » nodes
away (and, in case of the CA with memory, on the current state of that node itself).

We adopt the following conventions and terminology. Throughout, only Boolean
CA and SCA/NICA are considered; in particular, the set of possible states of any node
is {0,1}. The terms “monotone symmetric” and “symmetric (linear) threshold” func-
tions/update rules/automata are used interchangeably. Similarly, the terms “(global) dy-
namics” and “(global) computation” are used synonymously. Also, unless explicitly
stated otherwise, automata with memory are assumed. The default infinite cellular
space I" is a two-way infinite line. The default finite I" is a ring with an appropriate
number of nodes2. The terms “phase space” and “configuration space” will be used
synonymously, as well, and sometimes abridged to PS.

3 Properties of 1-D Simple Boolean Threshold CA and SCA

Herein, we compare and contrast the classical, parallel CA with their sequential coun-
terparts, SCA and NICA, in the context of the simplest (nonlinear) local update rules
possible, namely, the Boolean linear threshold rules. Moreover, we choose these
threshold functions to be symmetric, so that the resulting CA are also totalistic (see,
e.g., [7] or [21]). We show the fundamental difference in the configuration spaces, and
therefore possible computations, in case of the classical, concurrent threshold automata
on one, and the sequential threshold cellular automata, on the other hand: while the
former can have temporal cycles (of length two), the computations of the latter either
do not converge at all after any finite number of sequential steps, or, if the convergence
does take place, it is necessarily to a fixed point.

First, we need to define threshold functions, simple threshold functions, and the
corresponding types of (S)CA.

Definition 7: A Boolean-valued linear threshold function of n inputs, z1, ..., z,,
is any function of the form

1, if Ziwi - IT; Z 0
0, otherwise

f(xla ,mn) = { ()

where 6 is an appropriate threshold constant, and w; are real-valued weights.

Definition 8: A threshold cellular automaton is a (parallel or sequential) cellu-
lar automaton such that its node update rule § is a Boolean-valued linear threshold
function.

2 |t turns out, that circular boundary conditions are important for some of our technical results.
Likewise, some results about the phase space properties of concurrent and sequential threshold
CA may require (i) a certain minimal number of nodes and (ii) that the number of nodes be,
e.g., even, divisible by four, or the like. Heretofore, we shall assume a sufficient number of
nodes that “works” in the particular situation, without detailed elaborations.

Definition 9: A simple threshold (S)CA is an automaton whose local update rule
4 is a monotone symmetric Boolean (threshold) function.

Throughout, whenever we say a threshold automaton (threshold CA), we shall
mean simple threshold automaton (threshold CA) - unless explicitly stated otherwise.

Due to the nature of the node update rules, cyclic behavior intuitively should not
be expected in these simple threshold automata. This is, generally, (almost) the case,
as will be shown below. We argue that the importance of the results in this section
largely stems from the following three factors: (i) the local update rules are the simplest
nonlinear totalistic rules one can think of; (ii) given the rules, the cycles are not to be
expected - yet they exist, and in the case of classical, parallel CA only; and, related to
that observation, (iii) it is, for this class of (S)CA, the parallel CA that exhibit the more
interesting behavior than any corresponding sequential SCA (and consequently also
NICA) [19], and, in particular, while there is nothing (qualitatively) among the possible
sequential computations that is not present in the parallel case, the classical parallel
threshold CA are capable of a particular qualitative behavior - namely, they may have
nontrivial temporal cycles - that cannot be reproduced by any simple threshold SCA
(and, therefore, also threshold NICA).

The results below hold for the two-way infinite 1-D CA, as well as for the finite CA
and SCA with sufficiently many nodes and circular boundary conditions.

Lemma 1: (i) A 1-D classical (i.e., parallel) CA with » = 1 and the Majority
update rule has (finite) temporal cycles in the phase space (PS). In contrast, (ii) 1-D
Sequential CA with » = 1 and the Majority update rule do not have any (finite) cycles
in the phase space, irrespective of the sequential node update order s. ©

Remarks: In case of infinite sequential SCA as in the Lemma above, a nontrivial
cycle configuration does not exist even in the limit. In finite cases, s is an arbitrary
sequence of an SCA nodes’ indices, not necessarily a (repeated) permutation.

We thus conclude that NICA with § = M AJ and r = 1 are temporal cycle-free.
Moreover, it turns out that, even if we consider local update rules § other than the MAJ
rule, yet restrict § to monotone symmetric Boolean functions, such sequential CA still
do not have any temporal cycles.

Lemma 2: For any Monotone Symmetric Boolean 1-D Sequential CA S with
r =1, and any sequential update order s, the phase space PS(S) is cycle-free. ©

Similar results to those in Lemmata 1-2 also hold for 1-D CA with radius » > 2.

Theorem 1: (i) 1-D (parallel) CA with » > 1 and with the Majority node update
rule have (finite) cycles in the phase space. (i) Any 1-D SCA with § = MAJ or any
other monotone symmetric Boolean node update rule, » > 1 and any sequential order
s of the node updates has a cycle-free phase space. ¢

Remarks: The claims of Thm. 1 hold both for the finite (S)YCA (provided that they
have sufficiently many nodes, an even number of nodes in case of the CA with cycles,
and assuming the circular boundary conditions in part (i)), and for the infinite (S)CA.
We also observe that several variants of the result in Theorem 1 (ii) can be found in
the literature. When the sequence of node updates of a finite SCA is periodic, with a
single period a fixed permutation of the nodes, the temporal cycle-freeness of sequential
CA and many other properties can be found in [8] and references therein. In [4], fixed

permutation of the sequential node updates is also required, but the underlying cellular
space I" is allowed to be an arbitrary finite graph, and different nodes are allowed to
compute different simple k-threshold functions.

As an immediate consequence of the results presented thus far, we have

Corollary 1: For all r > 1, there exists a monotone symmetric CA (that is, a
threshold automaton) A such that A has finite temporal cycles in the phase space.

Some of the results for (S)CA with 6 = MAJ do extend to some, but by no means
all, other simple threshold (S)CA defined over the same cellular spaces. For instance,
consider the k-threshold functions with » = 2. There are five nontrivial such functions,
for k € {1,2,3,4,5}. The 1-threshold function is Boolean OR function (in this case,
on 2r + 1 = 5 inputs), and the corresponding CA do not have temporal cycles; like-
wise with the “5-threshold” CA, that update according to Boolean AND on five inputs.
However, in addition to Majority (i.e., 3-threshold), it is easy to show that 2-threshold
(and therefore, by symmetry, also 4-threshold) such CA with » = 2 do have temporal
two-cycles; for example, in the 2-threshold case, for CA defined over an infinite line,
{(1000)“, (0010)“} is a two-cycle.

We now relate our results thus far to what has been already known about simple
threshold CA and their phase space properties. In particular, the only recurrent types of
configurations we have identified thus far are FPs (in the sequential case), and FPs and
two-cycles, in the concurrent CA case. This is not a coincidence.

It turns out that the two-cycles in the PS of the parallel CA with § = MAJ are
actually the only type of (proper) temporal cycles such cellular automata can have.
Indeed, for any symmetric linear threshold update rule §, and any finite regular
Cayley graph as the underlying cellular space, the following general result holds (see
[7, 8]):

Proposition 1: Let a classical CA A = (I, N, T) be such that I" is finite and
the underlying local rule of T is an elementary symmetric threshold function. Then for
all configurations C € PS(A), there exists ¢ > 0 such that T**?(C) = T*(C). ¢

In particular, this result implies that, in case of any finite simple threshold automa-
ton, and for any starting configuration (3, there are only two possible kinds of orbits:
upon repeated iteration, after finitely many steps, the computation either converges to a
fixed point configuration, or else it converges to a two-cyclé.

We now specifically focus on § = MAJ 1-D CA, with an emphasis on the infinite
case, and completely characterize the configuration spaces of such threshold automata.
In particular, in the I" = infinite line case, we show that the cycle configurations are
rather rare, that fixed point configurations are quite numerous - yet still relatively rare
in a sense to be discussed below, and that almost all configurations of these threshold
automata are transient states.

Heretofore, insofar as the SCA and NICA automata were concerned, for the most
part we have allowed entirely arbitrary sequences s of node updates, or at least arbi-
trary infinite such sequences. In order to carry the results on FPs and TCs of (parallel)
MAJ CA over to the sequential automata with § = M AJ (and, when applicable, other

3 If one considers threshold (S)CA defined over infinite I", the only additional possibility is that
such automaton’s dynamic evolution fails to converge after any finite number of steps.

simple threshold rules) as well, throughout the rest of the paper we will allow fair se-
quences only: that is, we shall now consider only those threshold SCA (and NICA)
where each node gets its turn to update infinitely often. In particular, this ensures that
(i) any pseudo FP of a given NICA is also a proper FP, and (ii) the FPs of a given parallel
CA coincide with the (proper) FPs of the corresponding SCA and NICA.

We begin with some simple observations about the nature of various configurations
in the (S)CA with § = MAJ and r = 1. We shall subsequently generalize most of these
results to arbitrary » > 1. We first recall that, for such (S)CA with » = 1, two adjacent
nodes of the same value are stable. That is, 11 and 00 are stable sub-configurations.
Consider now the starting sub-configuration z;_;z;x;11 = 101. In the parallel case, at
the next time step, z; — 1. Hence, no FP configuration of a parallel CA can contain
101 as a sub-configuration. In the sequential case, assuming fairness, z; will eventually
have to update. If, at that time, it is still the case that z;,_1 = z;+; =1, thenz; — 1,
and z;_j1x;x;41 — 111, which is stable. Else, at least one of z;_;,z;y; has already
“flipped” into 0. Without loss of generality, let’s assume z; 1 = 0. Then z; 1z; =00,
which is stable; so, in particular, z;_1z;x;+1 Will never go back to the original 101.
By symmetry of § = MAJ with respect to 0 and 1, the same line of reasoning applies to
the sub-configuration % _;x;z;+1 = 010. In particular, the following properties hold:

Lemma 3: A fixed point configuration of a 1D-(S)CA with § = Majority and
r = 1 cannot contain sub-configurations 101 or 010. Similarly, a cycle configuration of
such a 1D-(S)CA cannot contain sub-configurations 00 or 11. ©

Of course, we have already known that, in the sequential case, no cycle states exist,
period. In case of the parallel threshold CA, by virtue of determinism, a complete
characterization of each of the three basic types of configurations (FPs, CCs, TCs) is
now almost immediate:

Lemma4: The FPs of the 1D-(S)CA with § = MAJ and r = 1 are precisely of the
form (000*+111*)*. The CCs of such 1D-CA exist only in the concurrent case, and the
temporal cycles are precisely of the form {(10)*, (01)*}. All other configurations are
transient states, that is, TCs are precisely the configurations that contain both (i) 000¢
or 111* (or both), and (ii) 101 or 010 (or both) as their sub-configurations. In addition,
the CCs in the parallel case become TCs in all corresponding sequential cases. ©

Some generalizations to arbitrary (finite) rule radii » are now immediate. For in-
stance, given any such » > 1, the finite sub-configurations 6! and 1"+! are stable
with respect to § = MAJ update rule applied either in parallel or sequentially; con-
sequently, any configuration of the form (0°+10* + 17*11*)*, for both finite and infi-
nite (S)CA, is a fixed point. This characterization, only with a considerably different
notation, has been known for the case of configurations with compact support for a
relatively long time; see, e.g., Chapter 4 in [8]. On the other hand, fully characterizing
CCs (and, consequently, also TCs) in case of finite or infinite (parallel) CA is more
complicated than in the simplest case with » = 1. For example, for » > 1 odd, and
I' = infinite line, {(10)~,(01)“} is a two-cycle, whereas for » > 2 even, each of
(10)«, (01)“ is a fixed point. However, for all » > 1, the corresponding (parallel) CA
are guaranteed to have some temporal cycles, namely, given » > 1, the doubleton of
states {(1"0")«, (0"1")«} forms a temporal two-cycle.

Lemmab5: Given any (finite or infinite) threshold (S)CA, one of the following two
properties always holds: either (i) this threshold automaton does not have proper cycles
and cycle states; or (ii) if there are cycle states in the PS of this automaton, then none
of those cycle states has any incoming transients. ¢

Moreover, if there are any (two-)cycles, the number of these temporal cycles and
therefore of the cycle states is, statistically speaking, negligible:

Lemma 6: Given an infinite MAJ CA and a finite radius of the node update rules
r > 1, among uncountably many (280, to be precise) global configurations of such a
CA, there are only finitely many (proper) cycle states. ¢

On the other hand, fixed points of some threshold automata are much more numer-
ous than the CCs. The most striking are the MAJ (S)CA with their abundance of FPs.
Namely, the cardinality of the set of FPs, in case of § = MAJ and (countably) infinite
cellular spaces, equals the cardinality of the entire PS:

Theorem 2: An infinite 1D-(S)CA with § = MAJ and any » > 1 has uncountably
many fixed points. ©

The above result is another evidence that “not all threshold (S)CA are born equal”.
It suffices to consider only 1D, infinite CA to see a rather dramatic difference. Namely,
in contrast to the § = MAJ CA, the CA with memory and with § € {OR, AND} (i)
do not have any temporal cycles, and (ii) have exactly two FPs, namely, 0¢ and 1%.
Other threshold CA may have temporal cycles, as we have already shown, but they still
have only a finite number of FPs.

We have just argued that 1-D infinite MAJ (S)CA have uncountably many FPs.
However, these FPs are, when compared to the transient states, still but a few. To see
this, let’s assume that a “random” global configuration is obtained by “picking” each
site’s value to be either 0 or 1 at random, with equal probability, and so that assigning a
value to one site is independent of the value assignment to any of the other sites. Then
the following result holds:

Lemma 7: If a global configuration of an infinite threshold automaton is selected
“at random?”, that is, by assigning each node’s value independently and according to a
toss of a fair coin, then, with probability 1, this randomly chosen configuration will be
a transient state. ©

Moreover, the “unbiased randomness”, while sufficient, is certainly not necessary.
In particular, assigning bit values according to outcomes of tossing a coin with a fixed
bias also yields transient states being of probability one.

Theorem 3: Let p be any real number such that 0 < p < 1, and let the
probability of a site in a global configuration of a threshold automaton being in state 1
be equal to p (so that the probability of this site’s state being 0 is equal to ¢ = 1 — p).
If a global configuration of this threshold automaton is selected “at random” where the
state of each node is an i.i.d. discrete random variable according to the probability
distribution specified by p, then, with probability 1, this global configuration will be a
transient state. ©

In case of the finite threshold (S)CA, as the number of nodes, N, grows, the
fraction of the total of 2V global configurations that are TCs will also tend to grow.

In particular, under the same assumptions as above, in the limit, as N — oo, the
probability that a randomly picked configuration, C, is a transient state approaches 1:

limn_ o Pr(C istransient) = 1 (2

Thus, a fairly complete characterization of the configuration spaces of threshold
CA/SCA/NICA over finite and infinite 1-D cellular spaces can be given. In particular,
under a simple and reasonable definition of what is meant by a “randomly chosen”
global configuration in the infinite threshold CA case, almost every configuration of
such a CA is a TC. However, when it comes to the number of fixed points, the striking
contrast between § = MAJ and all other threshold rules remains: in the infinite I
cases, the MAJ CA have uncountably many FPs, whereas all other simple threshold CA
have only finitely many FPs. The same characterizations hold for the proper FPs of the
corresponding simple threshold NICA automata.

4 Conclusion

The theme of this work is a study of the fundamental configuration space properties
of simple threshold cellular automata, both when the nodes update synchronously in
parallel, and when they update sequentially, one at a time.

Motivated by the well-known notion of the sequential interleaving semantics of con-
currency, we apply the “interleaving semantics™ metaphor to the parallel CA and thus
motivate the study of sequential cellular automata, SCA and NICA, and the comparison
and contrast between SCA and NICA on one, and the classical, concurrent CA, on the
other hand [19]. We have shown that even in this simplistic context, the perfect syn-
chrony of the classical CA node updates has some important implications, and that the
sequential CA cannot capture certain aspects of their parallel counterparts’ behavior.
Hence, simple as they may be, the basic operations (local node updates) in classical CA
cannot always be considered atomic. Thus we find it reasonable to consider a single
local node update to be made of an ordered sequence of finer elementary operations:
(1) fetching (“receiving”?) all the neighbors’ values, (ii) updating one’s own state ac-
cording to the update rule §, and (iii) making available (“sending”?) one’s new state to
the neighbors.

We also study in some detail perhaps the most interesting of all simple threshold
rules, namely, the Majority rule. In particular, we characterize all three fundamental
types of configurations (transient states, cycle states and fixed point states) in case of
finite and infinite 1D-CA with 6 = MAJ for various finite rule radii » > 1. We show
that CCs are, indeed, a rare exception in such MAJ CA, and that, for instance, the
infinite MAJ (S)CA have uncountably many FPs, in a huge contrast to other simple
threshold rules that have only a handful of FPs. We also show that, assuming a random
configuration is chosen via independently assigning to each node its state value by
tossing a (not necessarily fair) coin, it is very likely, for a sufficiently large number of
the automaton’s nodes, that this randomly chosen configuration is a TC.

To summarize, the class of the simple threshold CA, SCA, and NICA is (i) relatively
broad and interesting, and (ii) nonlinear (non-additive), yet (iii) all of these automata’s
long-term behavior patterns can be readily characterized and effectively predicted.

Acknowledgments: The work presented herein was supported by the DARPA IPTO

TASK Program, contract number F30602-00-2-0586.

References

1
2

3.

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.
20.
21.
22.

23.

. W. Ross Ashby, “Design for a Brain”, Wiley, 1960

. C. Barrett and C. Reidys, “Elements of a theory of computer simulation I: sequential CA

over random graphs”, Applied Math. & Comput., vol. 98 (2-3), 1999

C. Barrett, H. Hunt, M. Marathe, S. S. Ravi, D. Rosenkrantz, R. Stearns, and P. Tosic, “Gar-

dens of Eden and Fixed Points in Sequential Dynamical Systems”, Discrete Math. & Theo-

retical Comp. Sci. Proc. AA (DM-CCG), July 2001

. C. Barrett, H. B. Hunt Ill, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, *
Reachability problems for sequential dynamical systems with threshold functions”, TCS
1-3: 41-64, 2003

. C. Barrett, H. Mortveit, and C. Reidys, “Elements of a theory of computer simulation II:
sequential dynamical systems”, Applied Math. & Comput. vol. 107(2-3), 2000

. C. Barrett, H. Mortveit, and C. Reidys, “Elements of a theory of computer simulation Il1:
equivalence of sequential dynamical systems”, Appl. Math. & Comput. vol. 122(3), 2001

. Max Garzon, “Models of Massive Parallelism: Analysis of Cellular Automata and Neural
Networks”, Springer, 1995

. E. Goles, S. Martinez, “Neural and Automata Networks: Dynamical Behavior and Applica-
tions”, Math. & Its Applications series (vol. 58), Kluwer, 1990

. E. Goles, S. Martinez (eds.), “Cellular Automata and Complex Systems”, Nonlinear Phe-

nomena and Complex Systems series, Kluwer, 1999

T. E. Ingerson and R. L. Buvel, “Structure in asynchronous cellular automata”, Physica D:

Nonlinear Phenomena, vol. 10 (1-2), Jan. 1984

S. A. Kauffman, “Emergent properties in random complex automata”, Physica D: Nonlinear

Phenomena, vol. 10 (1-2), Jan. 1984

Robin Milner, “A Calculus of Communicating Systems”, Lecture Notes Comp. Sci.,

Springer, Berlin, 1989

Robin Milner, “Calculi for synchrony and asynchrony”, Theoretical Comp. Sci. 25, Elsevier,

1983

Robin Milner, “Communication and Concurrency”, C. A. R. Hoare series ed., Prentice-Hall

Int’l, 1989

John von Neumann, “Theory of Self-Reproducing Automata”, edited and completed by A.

W. Burks, Univ. of Illinois Press, Urbana, 1966

J. C. Reynolds, “Theories of Programming Languages”, Cambridge Univ. Press, 1998

Ravi Sethi, “Programming Languages: Concepts & Constructs”, 2nd ed., Addison-Wesley,

1996

K. Sutner, “Computation theory of cellular automata”, MFCS98 Satellite Workshop on CA,

Brno, Czech Rep., 1998

P. Tosic, G. Agha, “Concurrency vs. Sequential Interleavings in 1-D Cellular Automata”,

APDCM Workshop, Proc. IEEE IPDPS’04, Santa Fe, New Mexico, 2004

Stephen Wolfram “Twenty problems in the theory of CA”, Physica Scripta 9, 1985

Stephen Wolfram (ed.), “Theory and applications of CA”, World Scientific, Singapore, 1986

Stephen Wolfram, “Cellular Automata and Complexity (collected papers)”, Addison-

Wesley, 1994

Stephen Wolfram, “A New Kind of Science”, Wolfram Media, Inc., 2002

This article was processed using the IATEX macro package with LLNCS style

