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Abstract. Systems are becoming exceedingly complex to manage. As 
such, there is an increasing trend towards developing systems that are 
self-managing. Policy-based infrastructures have been used to provide a 
limited degree of automation, by associating actions to system-events. In 
the context of self-managing systems, the existing policy-specification 
model fails to capture the following: a) The impact of a rule on system 
behavior (behavior implications). This is required for automated 
decision-making. b) Learning mechanisms for refining the invocation 
heuristics by monitoring the impact of rules.  

This paper proposes Eos; An approach to enhance the existing policy-
based model with behavior implications. The paper gives details of the 
following aspects: 

• Expressing behavior implications. 
• Using behavior implications of a rule for learning and automated 

decision-making. 
• Enhancing existing policy-based infrastructures to support self-

management using Eos. 
The paper also describes an example of using Eos for self-management 
within a distributed file-system.  

1   Motivation 

Systems are becoming extremely complex to manage. The cost of 
administration is becoming a significant percentage (75-90%) of the Total Cost 
of Ownership (TCO) [6,16]. Jim Gray in his Turing award speech “What next? 
- A dozen IT research goals” [9] emphasized the need for buildings systems 
that are self-managing. IBM’s initiative on autonomic computing aims to build 
self-managing systems, reducing the demand on system administrators. 
 
System management in the real world is done by administrators. Their primary 
task is to ensure that the behavior goals specified by Service Level Agreements 
(SLA) are met. As such, they employ the following action loop: monitoring → 
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analyzing required changes to system behavior → tuning system parameters 
and invoking system-services.  
 
A self-managing system can be defined as one in which the system by itself 
decides the configuration parameters to be set and system-services to be 
invoked, in response to a specific system state. The aim of this adaptation is to 
meet the specified goals. Another important aspect of a self-managing system 
is its ability to evolve and learn from its actions i.e. self-learning 
 
Currently, policy-based infrastructures have been used to provide a limited 
degree of automation [15]. In simple words, a policy is defined as a set of rules 
that are based on ECA i.e. Event → if (Condition) → then (Action). These 
rules map system states to setting of tunable parameters and invocation of 
system services [5]. 
 
There are multiple approaches for specifying policies. They can be specified as 
a programming language that is processed and interpreted as a piece of 
software [8,10] or in terms of a formal specification language [17,19] or the 
simplest approach is to express policies as a sequence of rules. The IETF has 
chosen rule-based policy representation in its specifications [1].  

2   Problem Statement 

Existing rule-based policy specifications lack the capability to express 
semantics required for automated decision-making and self-learning. There is 
no systematic approach to define the following:   

• The impact of the rule on system behavior. This mapping is the 
essence for automated decision-making that the system uses to decide 
the rule(s) to be invoked. 

• Refining the invocation heuristics of the rules i.e. self-learning. Each 
time a rule is invoked, its impact of system can be recorded to refine 
future decision-making. 

 
Eos is an approach that extends the existing policy-based infrastructures for 
providing self-management semantics. The key contributions of this paper are:  

• Extending existing rule-based semantics for self-management 
specifications. 

• Using the extended semantics for automated decision-making and 
self-learning. 

• Describing the modules to be added to existing policy-based 
infrastructures to support the self-management semantics.  

  
The paper is organized as follows. Section 3 enumerates the terminology. 
Section 4 gives a bird’s eye-view of Eos. Section 5 formalizes the Eos concepts 
using a vector-space model. Section 6 describes a real-world example of self-
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management within a distributed file-system. Section 7 describes 
implementation details namely specification template, strategies for self-
learning and decision-making and the Eos framework. Section 8 discusses the 
related work followed by the conclusion. 

3   Terminology 

Dimensions of behavior 
The term “behavior” is generally used loosely to describe the observable 
characteristics of the system. These characteristics can be specified using 
abstractions such as QoS goals, transaction-properties [3], etc. In each of these 
abstractions, behavior is a composition of multiple dimensions. Figure 1 
represents system behavior to be composed of dimensions such as throughput, 
latency, reliability, security, availability and so on.   

 

 
Fig. 1. Dimensions of behavior 

Behavior Implications 
It is the impact of a rule on system behavior. It is expressed in terms of 
dimensions of behavior. 
 
Management-knob  
Broadly classified, administrators have two sets of controls for managing the 
behavior of the system. First, there are configuration parameters that are either 
application-specific or system variables such as buffer-size, number of 
concurrent threads, etc.  Second, there are system services that can be invoked 
in certain scenarios. For example, in a distributed file system, there are services 
such as backup, data-migration, and replication. These parameters and services 
are together referred as “management knobs.”  
 
Low-level system-state 
It represents details of the system such as resource utilization and system 
events. Resource utilization is expressed in terms of cpu, i/o and network 
bandwidth being used. Events can specify system conditions such as disk is 
95% full or errors such as network failures, or disk failures. 
 
Workload characteristics 
It captures the properties of the application request-stream. For example, in a 
file-system, workload characteristics include read-write ratio, 
sequential/random, etc. Workload characteristics play a significant role in 
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deciding the impact of the management-knob on system behavior. For 
example, increasing the Prefetch-knob makes sense only when the access 
pattern is sequential. 

4   Bird’s eye-view of Eos 

In the existing policy-specification model, rules are defined as condition-action 
pair expressed using if-then semantics. Eos extends this specification by 
defining a wrapper around the existing rule (Figure 2). The wrapper represents 
the behavior implications of the rule and also the workload characteristics on 
which it is dependent. 

 

 
Fig. 2. Extending existing specification model with Behavior implications. 

 
In simple words, the working of Eos can be described as follows: When the 
assigned goals are not met, a trigger is generated. The decision-making module 
scans through the repository using behavior implications, low-level pre-
conditions, and workload characteristics. Based on this analysis, it decides the 
rule(s) that should be invoked. Each time a rule is invoked, its impact is 
monitored and used to refine the behavior implications.  

5   Eos Concepts 

To formalize the Eos model, we represent the concepts using an n-dimensional 
vector space. Vector space models have also been used in other areas of 
research such as information retrieval [22]. To make the discussion concrete, 
we consider the example of invoking the data-replication knob within a 
distributed system. A more elaborate example is covered in the next section   

5.1   Behavior implications  

Let t1, t2, ….. tn  be the terms used to describe the dimensions of system 
behavior. For each term there is a corresponding vector ti in a vector space. 
This is shown in Figure 3. This vector space is referred to as the behavior 
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space. At any given time, the state of the system is represented as a point 
within the behavior space.  

Current-state =  (a1 t1, a2 t2, …, an tn) 
where ai is the current value along the dimension ti. 
 
The behavior implication of a rule B(r) is represented as a difference vector 
between the new state (b1t1, b2t2, …, bn tn) and the previous state (a1t1, a2t2, …, 
antn) before the rule is invoked. This vector is a sparse matrix with the diagonal 
representing the values of the dimensions it affects (assuming the dimensions 
are independent). A compact representation is represented as the following 
summation: 

B(r) = ∑i=1,n  (bi  - ai) ti        
 

 
Fig. 3. Vector space to represent system behavior. 

 
As an example, the behavior implication of the data-replication rule is a vector 
along the dimensions of throughput, latency and availability. It is represented 
as: 

  B(data-replication) = [(0.3)Throughput – (0.1)Latency + (0.2) Availability] 
where invoking replication improves throughput and availability by 30% and 
20% respectively, and degrades latency by 10%.  

5.2   Self-learning 

The behavior implication of a knob is not a constant vector. For example, in the 
case of data-replication knob, it is a function (g) of the workload characteristics 
(read/write ratio), the degree change of the knob-value (number of replicas) 
and the current value of the knob (going from 1 replica to 2 replicas has a 
different impact on behavior than going from 5 to 10 replicas). 
 
The behavior implication vector is a key component for automated decision-
making. Hence, the aim of self-learning is to refine the behavior implication 
vector by learning the dependency function (g). Each time a rule is invoked, the 
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changes to system behavior are monitored. The following feedback information 
is recorded: 

• Current behavior value and percentage change in value by invoking 
the knob (β) 

• Workload characteristics when the knob was invoked (γ)  
• Current value of the knob (η) 

 
Self-learning refines the behavior implication vector and is represented by:  

S[B(r)]  = ∑j=1,n [g(β, γ, η)]j  tj  
where the composite function (g) is learnt by using machine learning 
approaches such as neural networks. 

5.3   Automated Decision-making 

This is a 3-step process. The first step is to analyze the current state and 
determine the goals that are not met, the workload characteristics and the low-
level system state. Next, a list of candidate rules is generated. This is done by 
matching the workload characteristics and pre-conditions of the rules to the 
current system-state.  
 
The final step is to decide the combination of rule(s) to be invoked from 
amongst the list of candidate rules. One of the strategies for combining the 
behavior implication vectors is using the following recursive algorithm (Figure 
4):  

• Generate the target vector starting from the current-state to the 
desired-state 

• At each stage, select the unit vector whose cosine angle with the target 
vector is greatest. The step size of the vector is k, where ‘k’ signifies 
the degree of instability of the system and is less than the target 
vector. 

 
Fig. 4. Strategy for combining rules. 

6   Example: A Self-managing Distributed File-system 

Consider the example of managing a distributed file system within a data-
center. Let database and multimedia be the two primary applications running 
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on top of this file-system. The database is serving a complex workload 
consisting of OLTP and decision-support while the multimedia application is 
serving a Video-on-demand (VOD) service. The database and multimedia 
applications are tuned assuming the underlying file system meets goals 
specified in terms of throughput, latency, reliability, and availability. 
 
To meet the desired goals, the administrator tunes the file-system using the 
management-knobs, enumerated in table 2. The policy specification of these 
knobs consists of two parts. First, the low-level pre-conditions for invoking the 
knob. Second, the wrapper that extends rules with behavior implications.  

Table 1. Illustrating current system state. 

 Goals 
achieved 

% Change required 
[% Change 
Tolerated] 

Throughput × 15[-] 
Response-time  0 [2] 
Availability × 8[-] 
Security  0 [Authentication 

removable] 
Reliability  0 [35] 

 
Table 1 shows the current values of the assigned goals. Each of the goals is 
quantified by parameters that can be monitored. For example reliability can be 
quantified by MTBF, Time-to-repair (TTR), Number of Failures, type of 
Failures.  
 
As shown in table 1, the throughput and availability goals are not being met. 
Based on the low-level system-state, assume that the following management-
knobs from table 2 qualify the pre-condition:  Pre-fetch size, Data replication 
service and Volume migration service. Decision-making involves analyzing the 
behavior implications of each of the management-knobs: 

• Pre-fetch size: Will improve throughput, but does not have an impact 
on availability.  

• Replication: Will help throughput and replication, but will have a 
negative impact on latency, due to consistency requirements of the 
replicas. 

• Volume migration: Has a positive impact on throughput, availability 
and response-time 

As shown in Table 1, the value of response-time cannot be changed by more 
than 2%. Thus, based on the above analysis, the volume migration service is 
invoked. Similarly, there can be scenarios where more than one rule is invoked, 
using the vector-addition strategy described in Section 5.3. 

 
After volume migration is invoked, its impact on the behavior is recorded, 
along with the workload and low-level system state. This information is used to 
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re-fine the implication vector. Assume that in the steady-state, the invocation of 
volume migration actually degraded throughput. The implication vector is 
updated as:   
B(volume migration) = -(0.15) Throughput + (0.04) Latency + (0.2) 
Availability 

Table 2. Information specified by the Administrator. 

↑ Positive Impact  ↓  Negative Impact ↑+ Positive Impact   ↓ - Negative Impact   ↔ 
Unspecified Impact 

Behavior Implication Capability Low-level 
system-state 
(Pre-
conditions) and 
workload 
dependencies 

Throughput Latency Availability Security Reliability 

Configuration 
Parameters 

 

Clean-delay Memory 
available && 
high write/read 
ratio 

 ↔  ↔    ↔ 

Pre-fetch size Sequential 
access-pattern 

 ↑+  ↔    

Data Integrity 
Check  
 

Application 
imposed 
requirement 

 ↓ -  ↓ -   ↑  ↑ 

System 
Services 

 

Load 
balancing 

Resources not 
uniformly 
utilized 

 ↑  ↑    

Data 
replication 

Access pattern 
read-intensive  

 ↑  ↓  ↑+   

Volume 
migration 

Non-uniform 
utilization of 
disks  

 ↑  ↑  ↑   

Data Backup Low system-
load OR  
system errors 

 ↓  ↓    ↑ 

 

7   Implementation details 

7.1   Specification template for behavior implications 

The behavior implication template is specified as a wrapper around the existing 
rule. The specification template is shown in Figure 5. The specifications are 
treated as initial guidelines and are refined via self-learning. For the 
specification of behavior dimensions, the administrator specifies the impact 
using an intuitive description space. For example the degree of impact is 
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described using terms such as positive, negative, positive++, negative-- and 
unspecified.  
 

Policy-rule: <Name of knob> 
{ 

   [Rule Category] 
 [Behavior Dimensions] 
 [Workload Characteristics] 

Existing specification 
 [Condition-action specification] 

 
} 

 

Fig. 5. Specification template. 

 
The specification grammar is enumerated in Appendix. As an example, the 
data-replication service is represented as follows: 
Rule: Data-replication {   

Rule Category 
Type = Service; Range = Boolean; Resource = Storage; 

Behavior Dimensions 
Throughput Positive Always; Latency Negative;  
Availability Positive Depends; 

Workload characteristics 
 Primary = Read/write ratio 
Condition-Action   (Existing rule) 
{ 
If (num_reads/num_writes > 0.9) 

Then replication = ON 
} 

} 

6.2   Implementation of Self-learning  

When a rule is invoked, its impact on behavior depends on the following: 
1. The current value of the knob 
2. The current behavior state 
3. The workload characteristics 
In a simplified case (assuming a single variable for behavior and workload 
characteristics), these factors create a 3-dimensional learning space. This space 
is divided into sub-spaces, referred as “zones.” 
 
Each time a rule is invoked, the change in the behavior is recorded as a 
function of the percentage change in knob value. This function could be linear, 
polynomial, quadratic, exponential, etc. Similarly, the fact that the 
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administrator invoked the knob can also be recorded within the learning-space 
(Figure 6). 

 
Fig. 6. Self-learning by dividing space into “zones.” 

6.3 The Eos Framework  
 
Existing policy-based infrastructures consist of 3 key entities: A repository, 
Policy Enforcement Point (PEP) and Policy Decision Point (PDP). The PDP 
acts as a rule-filter i.e. based on the system-events, it determines the rules in the 
repository that are applicable and directs them to the PEP. 
 
Figure 7 illustrates the Eos Framework. It working can be defined as a 
sequence of three stages: 
1. Rule Filter: Pre-qualification of management- knobs 
The rule-filter analyzes the low-level system state and determines the 
configuration-knobs that can be invoked.  
2. Capability Broker: Decision-making for selecting knob 
As shown in the figure, the Capability Broker compares the specified goals and 
their current-values. It decides the knobs to be invoked.   
3. Self-learning  
After the rule is invoked, its impact on system-behavior is monitored and 
recorded in the rule repository.  

 
Fig. 7. Components of the Eos Architecture. 

 



Eos: An Approach of Using Behavior Implications for Policy-based Self-management   

 
The existing policy-based infrastructure supports the mapping of low-level 
system events to the invocation of management-knobs. The dotted line in the 
figure 7 illustrates this. Adding one more reasoning layer i.e. the Capability 
Broker to the existing infrastructure, allows for higher-order operations on 
rules namely automated decision-making and self-learning.  

8   Related work 

Mark et al [13] propose an approach to separate the goal from the base rule 
specification. In other words, they create a mapping between the rule and user-
requirements, making it easy for valiadation and usage. The Eos approach is in 
a similar direction, but aims to encodes goals for automated decision-making 
and refinement. 
 
Zinky et al. [7] present a general framework, called QuO, to implement QoS-
enabled distributed object systems. The QoS adaptation is achieved by having 
multiple implementations. Each implementation is mapped to an environment 
and a QoS region. This approach is static as it does not implement semantics 
for reasoning about the various possible configurations.  
 
[4] describes an approach to build self-tuning systems using genetic algorithms. 
It relies on the fact that each system parameter is tuned by an individual 
algorithm and the genetic approach decides the best combination. This 
approach does not allow refinement of the decision-making based on self-
learning.  
 
GridWeaver [2] and other projects [18] aim for configuration of large scale 
computation fabrics such as the grid. Their primary concern is with the initial 
system configuration. The goals of Eos are complementary to this effort and 
aims for dynamic QoS management. 

9   Conclusion 

This paper is aimed as a starting-point in describing a systematic approach to 
build self-managing systems, by extending the existing rule-based management 
model. The key points of the Eos approach are: First, it defines behavior 
implications to capture the mapping between the rule and its impact on system-
behavior. Second, it describes how these behavior implications can be used for 
automated decision-making and self-learning i.e. adding information to the 
rules based on the feedback from previous decisions. 
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Appendix: Specification Grammar 

[Rule Category] 
 
<Parameter-type>:= Tunable-parameter | System-service 
<Parameter-range>:= Integer | Boolean| Floating-point 
<Resource-type>: CPU | Memory | Network| Storage 
 
[Behavior Dimensions] 
[<Dimension><Impact-Degree><Impact-probability>]* 
 
<Dimension>:= Throughput | Response-time| Reliability | Availability | 
Security | Error-recovery 
<Impact-Degree>:= Positive | Negative | Positive++ | Negative-- | Unspecified 
<Impact-probability>:= Always | Mostly | Never | Depends | Unspecified  
 
[Workload Characteristics] 
<Primary parameter>:= <Parameter> 
<Secondary parameters>:= [<Parameter>]*  
 
<Parameter>:= Read/Write ratio | sequential/random ratio | Request-size | 
Request-rate | Burst-interval | think-time 
 
[Condition-action specification] 
Rule:= Specified using existing rule-based languages 
 
 


