
DecisionQoS: an adaptive, self-evolving QoS arbitration module
for storage systems

Sandeep Uttamchandani Guillermo A. Alvarez Gul Agha�

fsandeepu,alvarezgg@us.ibm.com
IBM Almaden Research Center, 650 Harry Rd., San Jos´e, California 95120, USA

Abstract

As a consequence of the current trend towards consoli-
dating computing, storage and networking infrastructures
into large centralized data centers, applications compete
for shared resources. Open enterprise systems are not de-
signed to provide performance guarantees in the presence
of sharing; unregulated competition is very likely to result
in a free-for-all where some applications monopolize re-
sources while others starve. Rule-based solutions to the re-
source arbitration problem suffer from excessive complex-
ity, brittleness, and limitations in their expressive power.
We present DECISIONQOS, a novel approach for arbitrat-
ing resources among multiple competing clients while en-
forcing QoS guarantees. DECISIONQOS requires system
administrators to provide a minimal, declarative amount of
information about the system and the workloads running
on it. That initial input is continuously refined and aug-
mented at run time, by monitoring the system’s performance
and its reaction to resource allocation decisions. When
faced with incomplete information, or with changes in the
workload requirements or system capabilities, DECISION-
QOS adapts to them by applying machine learning tech-
niques; the resulting scheme is highly resilient to unforeseen
events. Moreover, it overcomes significant shortcomings of
pre-existing, rule-based policy management systems.

1 Introduction

Data centers are becoming increasingly popular in enter-
prise environments, as resources are consolidated to reap
the benefits of statistical sharing and lower management
costs. Consolidated resources are mainly computing power
in the form of CPU cycles, network bandwidth, and storage
sub-systems. Within a data center, hundreds or thousands of
hosts typically access a terabyte or more of data each, stored

�Department of Computer Science, University of Illinois at Urbana-
Champaign. E-mail: agha@cs.uiuc.edu

in large, shared storage servers interconnected by a storage
area network (SAN) such as Fibre Channel. A variety of ap-
plications such as web servers, online transaction process-
ing and decision support systems runs on enterprise data
centers. Many of those applications depend on predictable
performance from the storage system in order to accomplish
their goals, e.g., acceptable interactive transactions may re-
quire average I/O latencies to be under 5 ms. In general,
a Service Level Agreement (SLA) prescribes the minimum
quality of service (QoS) that a client application will expe-
rience, provided that its demands on the system do not ex-
ceed given bounds. We concentrate on the performance that
the storage system must guarantee to its clients; other QoS
dimensions include reliability, performability, and manage-
ability.

Guaranteeing SLAs is a difficult problem, as the over-
whelming majority of off-the-shelf devices, operating sys-
tems, and protocols allocate resources on a best-effort ba-
sis. The problem becomes still more difficult in consol-
idated systems [8, 21]. Storage consolidation introduces
additional coupling, when previously unrelated workloads
compete for resources such as disk drive actuators, net-
work links and endpoints, switch backplanes, controller
processors, data caches, system buses, and SCSI intercon-
nects. Due to largely unpredictable and platform-dependent
scheduling policies, unregulated competition will result in
some applications starving while others use more than their
fair share of the system’s resources. Solutions based on
static provisioning typically result in low levels of system
utilization, and the only way of guaranteeing a fair alloca-
tion of resources is to resort to physical or logical separa-
tion. Static approaches also cope poorly with unforeseen
events such as workload variations, failures, and additions
of capacity to the system.

For additional flexibility, resource consumers can de-
clare their needs in advance to an arbitrator (a model closer
to that of admission control plus support for resource com-
partmentalization), or specialized QoS Arbitration Mod-
ules (QAMs) can modify resource allocations on the fly



whenever they are found to be inadequate. A QAM is re-
sponsible for ensuring that, as long as enough aggregate
resources are present in the system, all SLAs will be sat-
isfied1.

The existing approach for building a QAM is using
the rule-based paradigm [23]. Rules are used to define
how the resources are partitioned among client applications.
In AI terminology, the rule-based approach for specifica-
tions are referred to aspattern directed procedure invoca-
tion [15, 16]. While the advantage of procedural rule-based
schemes is that they allow the specification of direct in-
teraction between facts and eliminate the need for waste-
ful run-time searching [14], the disadvantage is that writing
procedures (i.e., rules) are like programs that are difficult
to write, modify and error-prone [10]. In contrast, this pa-
per introduces DECISIONQOS which is a declarative, i.e.,
non-procedural paradigm [13] for building QAMs, based
on Polus [25]. In DECISIONQOS, the administrator is not
required to specify how the resources should be partitioned
in different system states. Instead, the administrator simply
specifies facts and constraints as logical formulas which are
easy to write and modify. These logical formulas are com-
bined at run-time with prepackaged formalisms (referred to
as reasoning), to decide resource partitioning among the
client applications. Logic-based specifications were orig-
inally considered deficient in capturing heuristic knowl-
edge, which led to MIT’s “procedure-is-best” debate [29].
The debate ended in favor of logic-based approaches, af-
ter Kowalski’s procedural interpretation of the behavior of
a Horn-clause linear resolution proof finder [19].

In summary, DECISIONQOS’s specifications are declar-
ative; it does not require system administrators to encode
policies as complex, brittle rule sequences. DECISIONQOS
does not require accurate, detailed inputs [1] to make good
decisions; it can take a potentially minimal amount of sys-
tem and workload information, and then refine it at run time.
The net effect is that of relieving users from the burden of
making sensitive, error-prone decisions (e.g., setting deci-
sion thresholds), and achieving nimble responses to changes
in the operating conditions. DECISIONQOS hides a signif-
icant amount of complexity that is not relevant to users; in
so doing, it does not depend on human experts to tweak and
maintain the rule sets.

We define our version of the QoS arbitration problem,
and discuss the shortcomings of rule-based QAMs in Sec-
tion 2. Section 3 introduces our main assumptions; Sec-
tions 4 and 5 present DECISIONQOS’s architecture and in-
ternal operation, respectively. We put our work in context
in Section 6 and draw some conclusions in Section 7.

1More stringent definitions are possible: QAMs could attempt to guar-
antee that resources will be fairly shared, or that they will be optimally
utilized (e.g., load balancing). Such extensions are beyond the scope of
this paper.

2 The resource arbitration problem

In our version of the problem, a QAM manages the as-
signment of available storage resources to host workloads.
This mapping must ensure that no workload fails to meet its
SLA (a QoS violation). The QAM is invoked each time a
QoS violation is detected. Upon invocation, the QAM at-
tempts to bring the system to a state where no SLAs are vi-
olated, by identifying workloads whose resource consump-
tion should bethrottled.

Choosing which workloads to throttle is a fairly com-
plex task for many reasons. First, workload access pat-
terns change constantly (e.g., as a result of burstiness). The
amount of resources freed up by throttling a given work-
load to a given degree is a dynamic function. Second, a
workload’s behavior may be related, at the application level,
to that of other workloads or even human users. For in-
stance, throttling accesses to a database log will affect the
transaction workloads. The QAM needs to consider these
dependencies when they exist. Third, each workload uses
a fixed set of physical components referred to as itsinvo-
cation path. The QAM should make sure that the work-
loads being throttled share either invocation path elements
or application-level dependencies with the workloads that
are experiencing QoS violations—otherwise their perfor-
mance would be independent of one another, so throttling
them would not help remedy the problem. Fourth, failures
occur at unpredictable times. Even if data remains acces-
sible due to built-in redundancy (e.g., RAID) performance
will typically suffer because of the decrease in the overall
amount of available resources. QAMs need to adapt to these
events within a fairly short time interval, reapportioning re-
sources so that the system continues to satisfy the SLAs.
Fifth, the QAM should be potentially able to throttle any
subset of the workloads in the system (although doing so
optimally is NP-hard); this results in an exponential num-
ber of possible decisions.

Our SLAs areconditional: they specify maximum av-
erage I/O latencies over short sampling periods, as long as
workloads request up to a maximum number of bytes and
I/Os (throughput) during said periods. If workloads inject
load into the system at more than the rate prescribed in
their SLAs, the system is under no obligation of guaran-
teeing any bound on latency. Obviously, such rogue work-
loads are prime choices for resource restriction; but in some
extreme cases, well-behaved workloads may also need to
be restricted in order for the QoS violations to disappear.
When faced with several choices for a given set of QoS vi-
olations, the QAM should minimize the side effects of its
actions, i.e., have as little impact as possible on the work-
loads that are neither experiencing inadequate performance
nor being throttled directly.

Many existing implementations of storage QAMs are



based on flavors of policy-based management [17, 23]
where system behavior is described as a set of rules that
are invoked when certain system conditions are met. Most
rules are variations on the theme of Event-Condition-
Action (ECA), with the semantics that the action will be
executed if both a given type of event occurs (e.g., a viola-
tion of a given QoS metric) and a condition is satisfied. Let
us consider writing a few example rules to define the behav-
ior of a hypothetical QAM2. The set of rules can be divided
into two categories:

Rules for selecting candidate workloads:Workloads
are throttled in increments ofstep size.

Condition: If workload exceeds (1.6 SLA)^
inv path(w)4 inv path(wunder provisioned)
Action: Mark workloadw as candidate andstep size = 15%

Condition: If workload is between (1.25–1.6 SLA)̂
inv path(w) 4 inv path(wunder provisioned)
Action: Mark workloadw as candidate andstep size = 10%

Condition: If workload exceeds (1.15 SLA)^
inv path(w) 4 inv path(wunder provisioned)
Action: Mark workloadw as candidate andstep size = 3%

Rules for deciding which candidate workloads should
be throttled: Relationships between workloads are repre-
sented as a set ofcorrelation probabilities cpw, that throt-
tling workloadw will indirectly throttle any other workload
in the system. Letavg cp; var cp denote the average and
variance of the correlation probability over all candidates.

Condition: If num candidates > 1 ^ avg cp < 0:4 ^
var cp < 0:1
Action: Throttle allw with cpw � 0:8 by step size

Condition: If num candidates > 1 ^ avg cp < 0:4 ^
var cp > 0:3
Action: For workloads withcp < 0:2, throttle 85% of
excess demand; for workloads withcp between 0.2-0.6,
throttle 45% of excess demand

Condition: If num candidates > 1 ^ avg cp > 0:6 ^
var cp > 0:3
Action: Selectw min such thatcpw min is minimum, throt-
tle by step size.

The example highlights the main limitations of rule-
based approaches for building QAMs:

� Complexity: writing rules to express the QAM logic
is non-trivial and requires a fair amount of expertise.
Rules have built-in threshold values that are quite dif-
ficult to determine in a practical system—but the ef-
fectiveness of the rules depends on their accuracy to

2PredicateA4B is true iff setsA andB have a nonempty intersection.

a significant extent. More importantly, while writing
the rules, the system-builder has to (manually) account
for all the possible states that the system can be in,
and for all the possible steps that can be taken from
those states. System administrators cannot cope with
this level of complexity, resulting in error-prone policy
setting. Since rules implicitly capture the reasoning
details, it is difficult to understand and maintain the
precise reasoning behind the creation of a set of rules.

� Limitations on expressive power: the rule-based
paradigm is based on imperative specifications that
trade off a relatively lightweight processing at run time
by extensive reasoning required at rule creation time—
when detailed information about system and workload
may be hard to obtain. In addition, this largely static
approach makes it difficult to express semantics such
as throttling multiple workloads by varying amounts,
or to reason about the best possible option in terms of
minimizing domino effects due to correlations.

� Brittleness: this problem dates from the early days
of expert systems, as a consequence of policies get-
ting (unnaturally) encoded into sets of rules with lit-
tle or no internal structure. In a QAM, making any
changes to the workload selection policies is non-
trivial. For example, assume that the host workloads
now have an additional parameter for relative priori-
ties. Rule specifications will have to be extensively
changed to accommodate this change. A preferable
solution would allow changes to simply add to the rea-
soning engine in an incremental way, which is one of
the strengths of DECISIONQOS.

� Order-dependence: rules with overlapping conditions
are common, and the typical way of ensuring that they
right one will fire is to make sure they are evaluated in
a known order. This fall-through mechanism is error-
prone and not intuitive.

� Lack of adaptivity: specifications should beself-
evolving, i.e., the QAM should be able to augment
the information encoded in them by observing the be-
havior of the running system. This is especially re-
quired since the workload implications are continu-
ously changing and statically defined rules may not al-
ways be effective. Frameworks based on ECA rules
do not have this property. It is possible to definead
hoc variables within the rules for learning, but the rule-
based model does not inherently support learning.

3 System model

Figure 1 depicts our system model. Multiple hosts
H1; H2::::Hn connect to the storage devices in theback end



Interconnection

Fabric (switch)1

Interconnection

Fabric (switch) 2

LUNS

Controller Controller Controller

Host 1 Host 2 Host n

QoS Decision
 Module

Controller

Figure 1. The system model

in such a way that the QAM can monitor every single I/O
processed by the system. (One way of achieving this prop-
erty [8] is by instrumenting the code running on a block-
level virtualization appliance that is already present in the
system to fulfill some other role.) The QAM can gather
accurate information on the workload injected by each
host, and on the latencies currently experienced by hosts.
I/O requests originating from each host are grouped to-
gether into one or more workloads, e.g.,workloads(H1) =
fW1;W8; :::W�g, according to which client applications is-
sue them. All requests from a single client hosts could be
grouped into a single workload without changing the se-
mantics of the proposed framework, at the cost of mak-
ing it more difficult to observe patterns at run-time—which
are generally less identifiable in an aggregation of streams.
Each workload has an SLA associated with it. At the phys-
ical level, the storage infrastructure is represented as a col-
lection of elements (e.g., switches) that comprise the inter-
connection fabricIF ; the system also contains the storage
controllersSC and the logical disks (orLUNs)L. There is
a one-to-many relationship between theIF andSC, e.g.,
controllers(IF1) = fSC3; SC7; :::SC
g. Similarly, there
is also a one-to-many relationship betweenSC andL such
that a controller can have one or more LUNs that it man-
ages, e.g.,luns(SC1) = fL1; L3; :::L�g.

In this context, the invocation pathI of a workload
represents the storage componentsCO used to service
the I/O requests of the workload, e.g.,inv path(w1) =
fIF2; SC4; L8g. Workloads differ in their access char-
acteristics such as read/write ratio, block-size, sequen-
tial/random ratio. The exact amount of resources used by
a given workload along its invocation path depend on the
workload’s access characteristics. In summary, workloads
differ from each other in terms of the SLAs associated with

Problem Determination

Meta−level Reasoning
Base−level Reasoning

Action to be 
invokedGoals + Current−state

Queries:

Rule−of−thumb Specifications Learning Algorithms
Information collected
by using supervised
and re−enforcement learning

Declaractive system 
properties

User

Input

Trigger: Goals not met Actuator

Facts Conclusion

Knowledge base

Figure 2. Bird’s-eye view of DECISIONQOS

them, the access characteristics, the invocation paths, the
resources being used to execute the workload.

4 Bird’s-eye view ofDECISIONQOS

DECISIONQOS is a logic-based approach. Contrary
to existing imperative approaches in which the rule-
specifications encode the workloads to be invoked for dif-
ferent system states, DECISIONQOS uses a combination
of a declarative knowledge-base and logic-based reason-
ing to derive the workloads at run-time. The declarative
knowledge-base defines details of a workload(referred to
as workload-object, and capabilities of components present
within the system. The logic used in the reasoning engine
encodes the thinking process that is implicit while writing
the rules in imperative approaches. Making the logic ex-
plicit allows for more efficient throttling decisions as it is
possible to consider choices that are difficult to specify stat-
ically e.g. considering combinations of workloads and op-
timizing the throttling decision based on a particular goal-
function such as minimizing side-effects. Additionally, DE-
CISIONQOS proposes an innovative approach for creating
the knowledge base, i.e., it uses a combination of speci-
fications and learning algorithms to evolve the workload-
objects within the knowledge. Specifications serve to prune
to learning-space, allowing for faster convergence.

Within the knowledge base, the workload-objects are
represented as “fi rst-class” entities with attributes defining
details such as the resource implication of throttling the
workload, the invocation path(s) associated with the work-
load, the SLA goals of the workload. The details of the
workload-object are derived using a combination of declar-



ative specifications and learning. The declarative specifi-
cations fundamentally enumerate the feature-set, which is
used by the learning engine for interpolation.

Reasoning is a three step process. The problem de-
termination step derives a list of components whose be-
havior needs to change. The base-level reasoning is ex-
pressed in first-order logic and is responsible for searching
the workload-objects. It derives the candidate set of work-
loads that can be possibly used to satisfy the requirements
generated by problem determination step. The meta-level
decides between the candidate workloads using optimiza-
tion functions. We have developed a working prototype,
based on the ABLE toolkit [6], of the learning algorithms
and policy-manipulation functions of DECISIONQOS; we
plan to implement the remaining parts during the next few
months.

5 Design details

The design details of DECISIONQOS are divided into:

� Representation of the workload objects

� Incremental creation of the workload objects using
declarative specifications and learning

� Using of two-level reasoning to decide the workloads
to be throttled

To make the discussion more concrete, we consider the
following example (the example is kept simple for ease of
explanation) : There are 3 workloads We1; We2; We3

operating on the storage infrastructure. The infrastructure
consists of a fibre-channel switch IF�, a storage controller
SC� and two LUNS L
1; L
2.The workloads access a sub-
set of the LUNs.

5.1 Representation of the workload objects

In DECISIONQOS, the workload objects are first-class
entities with the following attributes:

� Invocation path: It represents the physical storage
components being used by the workload. Addition-
ally, for each component being used, the workload ob-
ject has information about the percentage of the com-
ponentś requests that are generated by this workload.
Per-component usage values are dynamic; they are
constantly updated by monitoring the system. The in-
vocation path is represented as:
Ie1 = f(IF�; V1); (SC� ; V2); (L
2; V3)g
where V1; V2; V3, represents the load as the percentage
of the total number of requests handled by the compo-
nent.

� Implications: This represents the resource impact of
throttling the workload, i.e., the per-component re-
sources that will be made available as a function of
throttling the workload. The impact is dynamic as it
depends on the access characteristics of the workload,
which are constantly changing.

�(W�;%throttling) =
fCOn; %usage change j 8 COn 2 I�g

For example, the implication of We1 is represented as:
�(We1; t) = f(IF�; f(t)); (SC� ; g(t)); (L
2;m(t))g
where f(t); g(t);m(t) are functions of the throttling
percentage t.

� Preconditions: Based on the SLA for each work-
load (we use both terms interchangeably). The
preconditions are generally of the form:
f(x; T1) ; (y; T2) j8x; y ((y < T2) ) (x <

T1)) ^ ((y > T2) ) (Best e�ort))g

For a precondition with performance goals, the precon-
ditions are defined in terms of throughput and latency,
where x � latency and y � throughput.

5.2 Incremental creation of the workload objects
using specifications and learning

In DECISIONQOS, the workload objects are generated
using an innovative combination of declarative specifica-
tions and learning. An alternative would be to observe the
system behavior (by monitoring the input and output values)
and interpolate the attributes of the workload object using
existing machine learning algorithms. For real-world sys-
tems, this pure black-box approach is not feasible because
the number of observables present in the learning space is
huge, making interpolation difficult.

5.2.1 Declarative Specifications

Specifications in DECISIONQOS are non-prescriptive, i.e.,
they simply enumerate properties of the workload. The en-
tities used in the specifications are referred to as the feature-
set. The feature-set is used by the learning algorithms for
monitoring and interpolation. Specifications are incomplete
in that they do not fully quantify the values associated with
the feature-set. For example, the possible specification is
throttling workload x affects component y. In this exam-
ple, y is added to the feature-set of workload x. Further, the
specification is not fully quantified in that it did not specify
the percentage by which x affects y. The current version
of DECISIONQOS takes as input a complete formulation of
the invocation paths; this can be obtained from automatic
configuration discovery tools.

Specifications in DECISIONQOS define the following:



� The precondition associated with the workload
changes quite infrequently.

� The components in invocation path of the workload.
This information is added to the Invocation path at-
tribute of the workload object. It defines details such
as the LUNs being used by the workload, the con-
trollers used to access these LUNs, the port numbers
on the switches that connect to these controllers. The
interconnection details such as port numbers, etc are
based on the physical interconnection and are rela-
tively static. The invocation path specifications are
used in conjunction with monitoring to derive infor-
mation such as the per-component resource usage as-
sociated with the workload.

For example, specifications for workload We1 are de-
fined as:
Precondition: f(Latency, 5 ms), (Throughput, 1000 iops)g
Invocation: fIF�; SC� ; L
2g
This information is added to the Preconditions and Invoca-
tion path attribute for the workload object We1.

5.2.2 Learning

Learning is used to derive information associated with the
workloads and the components. In DECISIONQOS, learn-
ing is a combination of on- and off-line processing. Af-
ter DECISIONQOS is initially deployed, it simply records
the system activity without making any decisions (train-
ing phase). After initial training, DECISIONQOS then starts
making decisions and uses reinforcement learning to refine
the literals in the interpolation function. The information
derived using learning is as follows:

� Implication attribute of the workload object, i.e.,
� Each time a workload is throttled, its percentage
change in the usage of each component in its invoca-
tion path is measured. A learning function such as a
neural net (based on reinforcement learning [12, 18,
24]) is used to interpolate the � function. As mentioned
earlier, � is a dynamic function whose value changes
with the access characteristics of the workload namely
read/write ratio, block-size, sequential/random ratio.

� Correlation between the workloadsWorkload Wa is
correlated with Wb if throttling Wa also throttles Wb.
Correlation arises due to the application-level depen-
dencies of the workloads. For example, Wa may rep-
resent the log associated with the database application
while Wb represents the query processing. Workload
correlation is represented as a dependency graph with
weights associated to the edges of the directed graph
(Figure 3). The weights represent the probability, as
shown in the figure, that throttling W1 will affect W3

is 20%.

0.2

W1

W2

W3

W4

W5

0.2

0.1 0.3
0.4

0.2

Figure 3. Correlation between the workloads

� Behavior model of the storage componentsThe aim is
to model the relationship between throughput and la-
tency for each physical component such as switches,
storage controllers, disks. The traditional, “hockey-
stick” relationship between throughput and latency is
represented by a curve where latency decreases for in-
creasing throughput up to a point (the “knee” of the
curve) beyond which increasing throughput drives la-
tency up. The learning function interpolates the value
of throughput, given the value for latency.

5.3 Reasoning

Reasoning is invoked when the SLA for any workload is
violated. Reasoning is a three-step process:

� The Problem determinationDetermines the list of
components whose behavior needs to change.

� The Base reasoningBased on the list of components
whose behavior needs to be modified, this step ana-
lyzes the workload objects and derives a list of candi-
date workloads that can be throttled.

� The Meta reasoningUsing the list of candidate work-
loads, this step determines the workloads to be actu-
ally throttled by optimizing based on the correlation
between the workloads.

5.3.1 Problem determination

This step analyzes the components in the invocation path of
the workload whose SLA is violated. The analysis uses the
throughput-latency model of the component in conjunction
with its current usage values. The algorithm for problem
determination is as follows:
Input : Workloads W1; :::;W�; ::: whose SLA is violated
Output : A set � where each element is of the form: (CO,
Maximum change in throughput, Maximum change in



latency)

Approach: For each workload W� whose SLA is violated:

� Determine the list of components in the invocation
path I� = fIF�; SC�; L�g of W�. Let the required
change in latency for W� be �.

� We want to determine the required change in the
throughput of each component such that the overall la-
tency of I� is reduced by �.

� For each component, use the throughput-latency
model. If the current operating point of the compo-
nent is above the “knee point” (i.e., high throughput
implies high latency), then continue. Else select the
next component in the path.

� The maximum throughput change for a component is
defined as moving the current operating point to the
knee of the curve (i.e., beyond the knee, a change in
throughput does not change latency). The correspond-
ing change in latency is referred to as the maximum
change in latency.

For example, assume We3 is not meeting its precondi-
tions (Goal latency = 6 ms, Current value = 10 ms, iops
within specified threshold). The problem determination
module analyzes the invocation path of We3 which con-
sists of IF�; SC� ; L
2. The average latency of IF� =
0:5ms; SC� = 2ms; L
2 = 7:5ms. Looking at
throughput-latency for each of these components, the prob-
lem determination module determines that the number of
requests serviced by SC� can reduced by a maximum of
18% to reach the knee point, while that for L
2 by 43%.
Component IF� is operating at the knee point and does not
need any changes.

5.3.2 Base reasoning

This step searches the workload objects. The semantics
for searching the specifications are expressed in first-order
logic.
Input : A set � of components whose behavior needs to
change.
Output : A set where the elements are of the form: (Work-
load, %Maximum possible throttling)
Approach: Base reasoning is similar to constraint-solving.
The input from the problem determination module can be
represented as a constraint 
: “Find all workloads that ac-
tively use the components in �”. The constraint is solved
by analyzing the attributes of the workload object that are
internally represented as sentences in propositional logic.

In simple words, the semantics for constraint solving are
expressed in first-order logic as: “ A workload that is ex-
ceeding its SLA limits ^ Has the specified component in its

invocation path ^ Has a non-zero implication function �

for the specified component.” Inference is carried out using
first-order logic operations. In what follows, let w stand for
a workload, c for a component, curr state for the state of
the system, and � for a requirement set such as �.
8 w;� Satisfy(�) ) SPrecondition(w) ^

SInvocation(w;�) ^ SImplication(w;�)

8 w SPrecondition(w) ) 8 y Precondition(w; y) ^
Greater(Throughput(y); Throughput(curr state))

8 w;� SInvocation(w;�) ) 9 c Invocation(w; c) ^
Equals(Component(�); c)

8 w;� SImplication(w;�) )
9!c Component(�) ^ Implication(w; c) ^
Greater(Interpolate(w;Access Patt(curr state); c); 0)

Equals = f(x; y) j 8 x; y string(x) = string(y)g

The function Interpolate(x; y; z) approximates the
impact of throttling workload x on component z, for its
current access pattern y.
The base reasoning in addition to deciding the candidate
workloads also prescribes the maximum allowable throt-
tling, defined as follows:

8 w; t MaxThrottling(w; t) ) Greater(t) ^
: SPrecondition(w)

In the example above, � is a workload that affects
(IF� _ SC�). Workload We1 is selected as a candi-
date workload since the predicate SPrecondition(We1) ^
SInvocation(We1; �) ^ SImplication(We1; �) is true.

5.3.3 Meta reasoning

This step selects the workloads to be throttled from the set
of candidate workloads. This selection is based on an opti-
mization goal such as minimizing the side-effects of throt-
tling the workload, or minimize variance in resource uti-
lization, etc. We describe details of meta reasoning with the
goal function for minimizing the side-effects of throttling
workloads.
Input : A set of candidate workloads WC which is of the
form (Workload, %Max. possible throttling, impact func-
tion for each component); plus a set of the form (Com-
ponent, Max possible change in throughput); plus a set of
constraints of the form (Set of components, Total required
change in latency)
Output : The throttling decisions which is a set of the form:
(Workload, %Throttling)



Approach: As mentioned earlier, the correlation between
the workloads is represented as a directed graph (as in Fig-
ure 3). The weight on the edges is expressed as a probability
P (A ) B).

� Let the set of all the workloads be represented by W .

� Calculate the weight associated with each workload in
the set of candidate workloads WC

Weight� = �
 � (W\WC )0 P (� ) 
)

� The elements in WC are sorted in ascending-order
based on their weight. The smaller the weight, the
more preferable is the workload.

� Throttle first element in WC . If (SLA met) then ter-
minate. Else remove the first element,and repeat this
step.

6 Related work

The related research is divided into two domains:

� Resource arbitration frameworks

� Policy-based management and AI-based frameworks

6.1 Resource arbitration frameworks

Resource arbitration frameworks such as Façade [21]
provide a per-workload storage performance monitoring
and QoS enforcement capabilities. Façade is built using a
central scheduler that regulates the rates of I/O workloads
accessing a common storage container such as a RAID logi-
cal disk. Façade does not account for competing workloads
sharing resources in various degrees, e.g., two logical units
in the same vs. in different disk arrays; and it throttles all
workloads to similar degrees when QoS violations occur.
Sleds [8] can selectively throttle only the workloads sup-
posedly responsible for the QoS violations, and has a decen-
tralized architecture that scales better than Façade’s. How-
ever, the policies for deciding which workload to throttle
are hard-wired and will not adapt to changing conditions.

The problem of resource arbitration has also been ad-
dressed in domains other than storage systems. Many net-
working solutions [3] are based on selectively dropping
packets [7]. They do not extend to widespread storage ac-
cess protocols [2] for multiple reasons [28], including the
severe consequences of packet loss. Proposals like Diff-
Serv [7] are not rich enough to distinguish all service classes
that may need to be treated differently.

6.2 Policy-based management and AI-based ap-
proaches

Policy based infrastructures have been used to automate
the task of management [22, 26]. In these applications,
the underlying policy specification model is based on ECA.
There are multiple approaches (i.e., syntax) for specifying
policies: Specified in terms of a special language that is
processed and interpreted as a piece of software [4] or in
terms of a formal specification language [9] or the sim-
plest approach is to interpret policies as a sequence of rules.
The IETF has chosen rule-based policy representation in
its specifications [17, 23]. The problems of brittleness
and complexity are one of the primary reasons limiting the
wide-spread usages of policy-based management (which is
precisely the problem a logic-based approach such as DE-
CISIONQOS aims to solve).

A variation of policy-based management has been pro-
posed in [27]. They use a Case-Based Reasoning approach,
in which a system starts off with no specifications and uses
the previously learnt cases to decide how a goal should be
transformed, has been employed in the webserver configu-
ration domain. The bootstrapping behavior of that approach
is not attractive in real-world scenarios where the reason-
able number of cases that need to be learned a priori are 0
(resource states, workload characteristics, goals, action set).
Bearden et al. [5] propose an approach to separate the goal
from the base rule specification. They create a mapping be-
tween each rule and user requirements, making it easy to
validate a rule set. The DECISIONQOS approach is more
sophisticated, in that it encodes the goal implications and
uses them to automate the reasoning process.

An approach that uses genetic algorithms for self-tuning
has also been proposed [11]. In this approach each system
parameter is tuned by an individual algorithm and the ge-
netic algorithm decides the best combination of algorithms.
Unlike DECISIONQOS, this approach does not allow refine-
ment of the decision-making based on learning. Zinky et
al., [30] present a general framework, called QuO, to im-
plement QoS-enabled distributed object systems. The QoS
adaptation is achieved by having multiple implementations.
Each implementation is mapped to an environment and a
QoS region. This approach is static, as it does not im-
plement semantics for reasoning about the various possible
configurations.

DECISIONQOS leverages concepts in AI and uses them
as building blocks in its solution. Techniques for specifica-
tion in expert systems are broadly classified as imperative
(e.g., rule-based), declarative (e.g., logic programming) or
mixed. Brittleness has been identified as the biggest draw-
back of imperative rule-based systems [10], whereas logic
based systems overcome this problem by using a reason-
ing engine to combine facts/beliefs in the knowledge base



to draw conclusions. The DECISIONQOS specification of
action attributes is similar to the declarative approach. Fur-
ther, reasoning in DECISIONQOS is a combination of speci-
fication search algorithms and higher-order operations. DE-
CISIONQOS uses forward chaining to search the specifica-
tions, but it is possible to use other approaches such as back-
ward chaining or heuristic-based searching. Other popu-
lar approaches for reasoning are: Model-based, Constraint-
based, and Case-based reasoning [20]. Finally, learning in
DECISIONQOS systematically refines the specifications. It
leverages research in the domain of machine learning al-
gorithms such as neural networks and reinforcement learn-
ing [12, 18, 24].

7 Conclusions

Most applications running on an enterprise data center
depend on getting minimum performance levels from the
storage system; if that cannot be provided, they fail. The
typical scenario where many applications compete for rela-
tively few high-end resources such as network switches and
disk arrays is not well suited for predictable sharing. Be-
cause of their workload characteristics and of scheduling
idiosyncrasies, resources will not be distributed according
to each application’s needs in the absence of a regulating
entity.

We present DECISIONQOS, a novel paradigm for build-
ing resource arbitration modules, and discuss its application
to storage systems. DECISIONQOS relies on declarative
specifications and on machine learning techniques to keep
an up-to-date body of knowledge about the storage system
and the workloads running on it. This body of knowledge
captures the concepts of physical and logical resource shar-
ing, dependencies and correlations among different work-
loads, and fluctuations in the performance experienced by
clients as a result of workload or system changes. DECI-
SIONQOS does not require detailed descriptions as its ini-
tial input; system administrators can just supply whatever
information is available to them, and DECISIONQOS will
supplement and/or amend it by dynamically observing the
system’s behavior.

DECISIONQOS relieves users from the burdens (com-
mon in rule-based systems) of coding policies into unstruc-
tured sets of event-condition-action rules. Such rule sets are
hard to tune, modify, and maintain, for they require users
to foresee at rule-creation time all the relevant families of
system states, the threshold values that determine when ac-
tions should be taken, and the particular actions prescribed
for each state. In contrast, DECISIONQOS hides from users
the complexity of individual decisions, letting users concen-
trate on the declarative, high-level aspects of system behav-
ior. The important point about this work however is not that
a declarative specification is preferable but rather that the

only rational course of action in QoS management is to re-
late policy to observation. This is because provisioning for
QoS has intrinsic uncertainties that can only be solved by
observing the system. The end result is that DECISIONQOS
does not depend on human experts, and is significantly more
resilient to the inevitable changes that will arise in practical
systems.

References

[1] G.A. Alvarez, E. Borowsky, S. Go, T. Romer, R. Becker-
Szendy, R. Golding, A. Merchant, M. Spasojevic, A. Veitch,
and J. Wilkes. Minerva: An automated resource provisioning
tool for large-scale storage systems. ACM Transactions on
Computer Systems, 19(4):483–518, November 2001.

[2] ANSI. SCSI architecture model - 2 (SAM-2), September
2002. Draft Standard, Project 1157-D, Revision 24.

[3] C. Aurrecoechea, A. Campbell, and L. Hauw. A survey of
QoS architectures. Multimedia Systems, 6(3):138–151, 1998.

[4] J. F. Barnes and R. Pandey. CacheL: Language support for
customizable caching policies. In Proceedings of the 4th In-
ternational Web Caching Workshop, 1999.

[5] M. Bearden, S. Garg, and W.J. Lee. Integrating goal specifi-
cation in policy-based management. In Proc. Int’l Workshop
on Policies for Distributed Systems and Networks, January
2001.

[6] J.P. Bigus, D.A. Schlosnagle, J.R. Pilgrim, W.N. Mills III,
and Y. Diao. ABLE: A Toolkit for Building Multiagent Au-
tonomic Systems. IBM Sys. J., 41(3), September 2002.

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An architecture for differentiated services. IETF
RFC 2475, 1998.

[8] D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu,
R. Menon, and T. Lee. Performance virtualization for large-
scale storage systems. In Proceedings of the 22nd Sympo-
sium on Reliable Distributed Systems, October 2003.

[9] R. Darimont, E. Delor, P. Massonet, and A. van Lam-
sweerde. GRAIL/KAOS: An environment for goal-driven
requirements engineering. In Proc. ICSE’98 - 20th Intl. Con-
ference on Software Engineering, 1998.

[10] V. Dhar and H.E. Pople. Rule-based versus structure-
based models for explaining and generating expert behavior.
Comm. ACM, 30(6), June 1987.

[11] D. Feitelson and M. Naaman. Self-tuning systems. IEEE
Software, 16(2):52–60, 1999.

[12] J. Ghosh and A. Nag. An Overview of Radial Basis Function
Networks. Radial Basis Function Neural Network Theory
and Applications, Physica-Verlag, 2000.

[13] C. Green. Application of theorem proving to problem solv-
ing. In B. L. Webber and N. J. Nilsson, editors, Readings in
Artificial Intelligence, pages 202–222. Kaufmann, Los Altos,
CA, 1981.



[14] F. Hayes-Roth. Rule-based Systems. Comm. ACM, 28(9),
September 1985.

[15] C. Hewitt. Planner: A language for proving theorems in
robots. In Proc. of the 1st IJCAI, pages 295–301, Washing-
ton, DC, 1969.

[16] C. Hewitt. Procedural embedding of knowledge in plan-
ner. In Proc. of the 2nd IJCAI, pages 167–182, London, UK,
1971.

[17] IETF Policy Framework Working Group. IETF Policy Char-
ter. http://www.ietf.org/html.charters/policy-charter.html.

[18] T. Kohonen. Self-Organizing and Associative Memory 3rd
ed. Springer-Verlag, 1988.

[19] R. Kowalski. Predicate logic as programming language.
In Jack L. Rosenfeld, editor, Proceedings of the Sixth
IFIP Congress (Information Processing 74), pages 569–574,
Stockholm, Sweden, August 1974.

[20] D.B. Leake. Case-Based Reasoning: Experiences, Lessons
and Future Directions. AAAI Press, 1996.

[21] C. Lumb, A. Merchant, and G.A. Alvarez. Façade: Virtual
storage devices with performance guarantees. In Proc. 2nd
Conf. on File and Storage Technologies (FAST), pages 131–
144, April 2003.

[22] E. Lupu M. Sloman. Security and management policy spec-
ification. IEEE Network, March 2002.

[23] B. Moore. Network Working Group – RFC3060. Pol-
icy Core Information Model – Version 1 Specification.
http://www.ietf.org/rfc/rfc3060.txt, 2001.

[24] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning
Internal Representations Through Error Propagation. In D.E.
Rumelhart and J.L. McClelland, editors, Parallel Distributed
Processing: Experiments in the Microstructure of Cognition,
Vol. 1. MIT Press, 1986.

[25] S. Uttamchandani, K. Voruganti, S. Srinivasan, J. Palmer,
and D. Pease. Polus: Growing storage QoS management be-
yond a 4-year old kid. In Proc. 3rd Conf. on File and Storage
Technologies, March 2004.

[26] D. Verma. Simplifying network administration using policy
based management. (2), March 2002.

[27] D. Verma and S. Calo. Goal Oriented Policy Determination.
In Proc. 1st Workshop on Algorithms and Architectures for
Self-Managing Sys., pages 1–6. ACM, June 2003.

[28] J. Wilkes. Travelling to Rome: QoS specifications for au-
tomated storage system management. In D. Hutchinson
L. Wolf and R. Steinmetz, editors, Proceedings of 9th In-
ternational Workshop on Quality Of Service (IWQoS), pages
75–91. Springer Verlag, June 1991.

[29] T. Winograd. Frame representations and the declara-
tive/procedural controversy. In R. J. Brachman and H. J.
Levesque, editors, Readings in Knowledge Representation,
pages 357–370. Kaufmann, Los Altos, CA, 1985.

[30] J. A. Zinky, D. E. Bakken, and R. D. Schantz. Architectural
support for Quality-of-Service for CORBA objects. Theory
and Practice of Object Systems, 3(1), 1997.


