
MONITORM INING: Creating Domain
Knowledge for System Automation using a
Gray-box Approach

Sandeep Uttamchandani
IBM Almaden Research Center
San Jose, CA, USA
sandeepu@us.ibm.com

Xiaoxin Yin
University of Illinois at Urbana Champaign
Urbana, IL, USA
xyin1@uiuc.edu

John Palmer
IBM Almaden Research Center
San Jose, CA, USA
jdp@us.ibm.com

Gul Agha
University of Illinois at Urbana Champaign
Urbana, IL, USA
agha@uiuc.edu

Abstract
The effectiveness of automated system management is dependent on the domain-specific
information that is encoded within the management framework. Existing approaches for
defining the domain knowledge are categorized into white-box and black-box approaches,
each of which has limitations. White-box approaches define detailed formulas for system
behavior, and are limited by excessive complexity and brittleness of the information. On
the other hand, black-box techniques gather domain knowledge by monitoring the system;
they are error-prone and require an infeasible number of iterations to converge in real-
world systems.

MONITORM INING is a gray-box approach for creating domain knowledge in auto-
mated system management; it combines simple designer-defined specifications with the
information gathered using machine learning. The designerspecifications enumerate in-
put parameters for the system behavior functions, while regression techniques (such as
Neural Networks, Support Vector Machines) are used to derive the mathematical function
that relates these parameters. These functions are constantly refined at run-time, by pe-
riodically invoking regression on the newly monitored data. MONITORM INING has the
advantage of reduced complexity of the designer specifications, better accuracy of regres-
sion functions due to a reduced parameter set, and self-evolving with the changes in the
system. Our initial experimental results of applying MONITORM INING are quite promis-
ing.

Keywords
Automated system management, Domain knowledge, Gray-box techniques, Autonomic
Computing, Models

1. Introduction

System management today is driven by human administrators that continuously monitor
the system, analyze its behavior, and take corrective actions to ensure that it converges to-
wards desired threshold goals for performance, availability, security. With the cost of sys-

tem management becoming a significant percentage of theTotal Cost of Ownership[13],
self-management has become a necessity [7]. The idea of self-management is not a new
one – Expert Systems [3] have been used to automate various human-intensive processes
such as disease diagnosis [4], fault analysis [16], and so on. An important lesson learnt by
deploying Expert Systems is summarized by the Knowledge Principle [9]: “The power of
AI programs (i.e. expert systems) to perform at high levels of competence is primarily a
function of the program’s knowledge of its task domain, and not of the program’s reason-
ing processes.”In simple words, the effectiveness of an automated system isdependent on
therichnessof domain-specific knowledge encoded within the managementframework.

The focus of this paper is an approach for creating the domainknowledge required for
automated system management. Existing techniques for encoding domain knowledge fall
into two extremities:
• White-boxapproaches where the system-designer defines detailed formulas [10, 12]

or rules [8, 19, 26] to describe the characteristics of the system. These techniques are
limited by excessive complexity, and brittleness of the domain knowledge to ongoing
changes in the system.

• Black-boxapproaches where the system acquires domain-specific knowledge by mon-
itoring the system behavior and using machine learning techniques [18, 27]. This ap-
proach is error-prone, and requires an infeasible number ofiterations for converging in
real-world multi-parameter systems.
MONITORM INING is agray box approachfor building domain knowledge; it uses a

combination of simple system-designer specifications withthe information gathered using
machine learning. The domain knowledge consists of mathematical functions (referred to
asmodels). For each of these models, the designer specifications listthe domain-specific
input parameters, while regression techniques such as Neural Networks [21], Support
Vector Machines [5] are used to deduce the exact mathematical function that correlates
these parameters. These functions are continuously refinedat run-time by periodically
applying regression to the newly monitored data. The advantages of MONITORM INING

are simplistic designer-defined specifications, non-brittleness, and faster convergence of
the deduced functions by limiting the number of parameters considered for regression.

This paper addresses the representation, creation, and evolution of domain knowledge
for automated system management. To make the discussion concrete, we describe the
details in the context of automated storage management. Thekey contributions of this
paper are:
• A model-based represention of the domain knowledge for automated storage manage-

ment.
• A methodology to create and evolve the domain knowledge using a gray-box approach.

We also describe an off-the-shelf technique to cater incomplete designer specifications.
Finally, we describe the initial experimental results of using MONITORM INING for creat-
ing the domain knowledge for a real-world storage system setup.

The outline of the paper is as follows: Section 2 gives the big-picture of automated
management in storage systems. Section 3 describes the representation of the domain
knowledge. Section 4 describes the gray-box approach for creating the domain knowl-
edge, alongwith details for evolution of the models and handling incomplete designer

specifications. Section 5 describes the initial experimental results. Section 6 covers the
related work, followed by conclusion and future work.

2. Background: Automated Management in Storage Systems

Table 1 defines the management terminology used in the rest ofthe paper.

Term Description

Service
Level
Objec-
tives
(SLO)

Defines the desired threshold values for the system‘s performance, reliabil-
ity, security, availability. The current iteration of MONITORM INING supports
performance SLOs only. A performance SLO is of the form: throughput-
threshold@latency-threshold i.e. a request-rate below the throughput-threshold
should have the average response-time below the latency-threshold.

Workload There are multiple applications (such as web-server, e-mail) running on the sys-
tem; the I/O requests generated by each application are referred to as workload.
Workload characteristicsrefers to I/O access characteristics namely request rate,
average request size, read/write ratio, sequential/random access pattern. The data
accessed by the workload is referred to as thedata-set

Corrective
Actions

Changes the behavior of the system so that it converges towards administrator-
defined goals. Actions are categorized into:Short-term actionsthat tune the sys-
tem without physical movement of data, and can take into effect immediately e.g.
data-prefetching, throttling.Long-term actionsgenerally involve physical move-
ment of data, and have a non-negligible transient cost e.g. data-migration, replica-
tion.

Invocation
path

The series of components in the system that are used for servicing the workload
requests.

Table 1 System Management Terminology

Figure 1 shows a production storage system with multiple applications (such as e-mail,
database, web-server) using the storage resources. Each application can have different
access characteristics, priorities, and SLOs. The task of astorage virtualization engine
(such as SAN.FS [20], SAN Volume Controller [11]) is to map the application-data to
the available storage resources. A one-time mapping of datato resources is not optimal
and not feasible in most scenarios because of: Incomplete initial information of the access
characteristics, component failures and load surges that occur at run-time. Thus there is
a need for automated system management to continuously observe, analyze, and act by
invoking corrective actions such as throttling, pre-fetching, data replication, etc.

A management framework invokes corrective actions to minimize the effect of system
events such as workload variations, component failures, and load surges, on the SLOs of
workloads running in the system. Building the action selection function is non-trivial as it

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������

����������
����������
����������
����������

����
����
����
���� ����

����
����

����
����
����

�����
�����
�����
�����������������

������������
������������
������������

����������
������
������
������
������ �������

�������
�������
�������

������������������
��������������
��������������
��������������
��������������

SLO Goals

Storage Virtualization
Mapping Application−data to Storage Resources

Email
Application

Web−server
Application Data Warehousing

Figure 1: Mapping the data-sets of the workloads to the available resources

needs to take into account: 1) The cost-benefit of actions that is dependent on the system
state and the parameters values used for action invocation;2) The workload trends and
load pattern on the system that might make a few actions infeasible in a given state; thus
there is no universal “rule-of-thumb” for invoking actions. 3) There are a large number of
possible system states (it is not possible to write policy rules for selecting actions in every
possible system state), and the need to adapt to changes in the system such as addition of
new components, new application workloads.

A model-based approach for automated system management makes decisions using
prediction functions for the behavior of the system for given load characteristics and con-
figuration parameters [22, 25]. The key challenges with thisapproach are the representa-
tion of domain-specific details as prediction functions or models, creation of these models,
and using the models at run-time to decide the corrective actions. MONITORM INING is a
framework for the representation and creation of self-evolving models.

3. Representation of the Domain Knowledge

The domain knowledge consists of mathematical functions (i.e. models) that capture the
system details required for deciding corrective actions atrun-time. In the case of stor-
age systems, the domain knowledge consists of models for: 1)The response time of the
component as a function of incoming load at the component(component model); 2) The
load on the individual components in the workload’s invocation path(workload model);
3) The cost and benefit of action invocation(action model). This section covers the details
of each of these models

3.1 Component Model

A component model predicts the response time of the component as a function of the
incoming load at the component. The component’s response time is dependent on the
service-time and wait-time incurred by the workload stream. The service time is a
function of the workload characteristics, and is of the form:
StimeWi = c(req size, req rate, rw ratio, random/sequential, cache hit rate...)

The wait time represents the time spent in the queue due to interleaving with other
workload streams arriving at the component. MONITORM INING approximates this non-
trivial computation by estimating the wait time for each individual stream as per a multi-
class queueing model [17]. The resultant response time is approximated as follows. The
utilization Uof the component is:

Utilization (U) =

n∑

i=1

λWiStimeWi

whereλWi is the arrival rate andStimeWi is the service-time for the workload stream
Wi. The resultant response timeRtime of the component for the workload streamWi is
represented as:

RtimeWi =
StimeWi

1 − U

3.2 Workload models

Representation and creation of workload models has been an active area of research [6].
In MONITORM INING, workload models predict the load on each component as a function
of the request rate that each workload injects into the system. For example, to predict the
rate of requests at componenti originated by workloadj:
Componentloadi,j = wi,j(workload request ratej)
In real scenarios, functionwi,j changes continuously as workloadj changes or other
workloads change their access patterns (e.g., a workload with good temporal locality will
push other workloads off the cache). To account for these effects, MONITORM INING

represents functionwi,j as amoving average[24] that gets recomputed by regression
everyn sampling periods.

3.3 Action Model

An action model captures the transient costs, and expected benefit of invoking the action;
these effects are a function of the current system state and the values of the invocation
parameters. The effect of invoking the action is represented as a change in one of the
following:

1) Component modelse.g., data prefetching improves the response-time of the com-
ponent for sequential workloads, and represented as a change in the component model.

2) Workload modelse.g., migration of data reduces the workload’s dependency on the
current component as data is moved to the new component; thisis represented as a change
in the workload model.

3) Workload access characteristicse.g., the throttling action is represented as a change
in the workload request rate.

In the examples described above, throttling and data prefetching have a negligible
transient cost. But actions like migration incur the transient cost of reading data from the
source and writing it to the target. Both the transient cost as well as the permanent benefit
function are represented in terms of a workload model; the transient cost is formalized as
an additional workload stream on the source and target components.

4. Creation of theMONITORM INING models

The functions for the component, workload, and action models can potentially consist of a
large number of parameters. For example, in the case of migration action, the monitoring
infrastructure will collect detailed state information (order of hundreds of parameters)
from indiviual components in the invocation path. A pure black-box approach will try to
find a function that relates all of them and will be quite inaccurate; on the other hand,
the white-box approach would define the exact function between the relevant subset of
parameters, but would be complex to define and brittle to the system changes.

MONITORM INING uses a hybrid approach where the designer defines a list of corre-
lated parameters along with a hint of the nature of relationship (as shown in figure 2),
while data regression techniques are used to deduce the function. The intuition of MONI-
TORM INING is that the list of correlated parameters is dependent on theactual implemen-
tion and is non-brittle w.r.t to the underlying physical infrastructure, while the co-efficents
of the parameter functions are brittle and need to be evolvedat run-time.

4.1 Designer-defined Specifications

MonitorMiningHeuristics
User

Information
Monitored

System
Processor

Data

Module
Regression

Functions
(action effects &

component performances)

Figure 2: The overall procedure of deriving action and component functions.

The designer-specifications enumerates a list of related input-output parameters for
the action, component, and workload models e.g.Parameter X is related to the target
Parameter Y. Additionally, the specifications can have an optional hintfor the type of
relationship e.g.There is a quadratic relationship between Parameter X and Parameter Y.
Figure 3 gives example specifications for the migration action.

4.2 Extracting functions using Regression

Using the designer specifications, MONITORM INING analyzes the performance log to
derive the models. The schema for the performance logs is as shown Figure 4.

The parameters short-listed by the designer-specifications are extracted from the per-
formance log and fed to the regression algorithms. MONITORM INING implements two
approaches for regression, – Support Vector Regression (SVR) [5] that is relatively easy
to implement, and the traditional Neural Network [21] with back-propagation.
• The key idea of SVR is to find the balance point between the training error and the

complexity of the function; in other words, it avoids findingcomplex functions with

<Action: Migration>

<Transient-behavior>

<output_parameter ="request-rate" @ source>

<input_parameters>

<parameter name="migration_speed" func="linear" />

<parameter name="data_size" />

</input_parameters>

<output_parameter ="request-size" @ source>

<input_parameters>

<parameter name="disks_per_lun">

< parameter name = "stripe_size" />

</input_parameters>

<output_parameter ="read/write_ratio" @ source>

<input_parameters>

<parameter name="workload_characteristics" />

</input_parameters>

<output_parameter ="random/sequential_ratio" @ source>

<input_parameters>

<parameter name="workload_characteristics" />

</input_parameters>

<\Transient-behavior>

<Permanent-behavior>

<output_parameter ="request-rate","request-size", "read/write_ratio",

"random/sequential_ratio" @ source>

<input_parameters>

<CONSTANT />

</input_parameters>

<\Permanent-behavior>

<\Action>

Figure 3: Specifications for the migration action(for simplicity we only enumerate the
source component parameters).

actionID

type

timestamp

size

duration

speed

Action

... ...

type

... ...

Component

capacity

compID

speed

band width

cache size

workloadID

type

Workload
workloadID

compID

comp_role

Invocation
Workload

actionID

workloadID

compID

comp_role

Invocation
Action

latency

compID

timestamp

throughput

Performances
Component

Load
Characteristics

... ...
block size

timestamp

request rate

read/write ratio

rand/seq ratio

compID

workloadID

Figure 4: The schema of the database of monitored information.

low error only on training data but high error on real world data. SVR is able to identify
linear functions, polynomial functions, and functions of arbitrary shapes as directed by
user. It is usually inefficient for large datasets.

• Neural networks can find functions of arbitrary shapes by adapting its network struc-
ture with the data. It is efficient and can perform reinforcement learning to adapt to
changing environments.The structure of a neural network isshown in Figure 5. A neu-
ral network contains an input layer, one or more hidden layers, and an output layer.

Update weights

real value
=

feedback

__

Input layer Hidden layer Output layer

output

Input

Figure 5: Adaptive learning of neural networks.

MONITORM INING uses a brute force approach to determine the function (in case the
designer specifications do not specify them). It applies different function forms to the data
and chooses one with the “best-fit.” The list of candidate functions used are: (1) linear
(x), (2) quadratic (x2 + ax), (3) power (xa), (4) reciprocal (1

x
), (5) logarithm (ln(x)), (6)

exponential (ax), and (7) simple combinations of two of them, such as reciprocal linear
(1

x+a
).

In summary, neural networks and support vector machines canboth identify functions
of arbitrary shapes. But they usually have better performances when the data can be well
modelled by some simple models. The time complexity for Neural networks should be
linear to the data size (but usually it will iterate many rounds for optimization). The time
complexity for support vector machines is quadratic w.r.t.number of data points.

4.3 Bootstrapping and Evolution of models

The initial baseline values for the action, workload, and component models are generated
as follows:
• Component models: The initial values are generated either from the component’s per-

formance specifications provided by the vendor, or by running calibration tests and
measuring the component’s behavior for different permutations of workload charac-
teristics. The calibration tests generate I/O requests with different permutation of<re-
questsize, readwrite size, randomssequentialratio, numthreads>. For each of the
IO permutations, the iops, wait-time, and service-time counters are collected from the
component.

• Action models: The effect of action is mainly dependent on the implementation details
of the actions rather than the deployment specific details. As such, the baseline values
for the action models can be pre-packaged by running in-house experiments to invoke
the action for different workload characteristics and invocation parameter values.

• Workload models: The initial values of the workload models is based on libraries of
workload characteristics for different applications suchas e-mail, web-server, online-
transactions, etc.

The models are continuously updated using the newly monitored; this improves the
accuracy of the regression functions (increasing the number of data-points that have been
seen in the past), and also accounts for changes in the system(especially the workload
models). Evolving models using neural networks is based on the difference between the
predicted value and the actual monitored value; this difference is used forback propa-
gation i.e. change the link weights between units of different layers. MONITORM INING

uses two approaches to evolve the models: 1) A computationally efficient approach is to
invoke regression after everym additional data-points are collected from the system; this
approach is used for the component and action models as they are relatively static com-
pared to the workload models 2) Another approach is to updatethe model after every pre-
diction; in this the difference between the predicted valueand the actual value is used as
an error-feedback to adjust the coefficient values in the model using re-enforcement based
neural networks. The experimental section compares results of both these approaches.

4.4 Handling incomplete specifications

The system designer may not provide a complete set of relevant parameters. Missing
parameters lead to inaccuracy of the models and reflect as larger differences between the
predicted value and the actual value. A data mining approachcalledIceberg Cubing[2] is
used for this purpose. The approach can be formally stated as: Given a set of records with
K parametersx1, . . . , xK and a target valuey, find out all groups of at leastm records
that have identical or similar values on at leastK − δ parameters (δ = 1 or 2). We say
two valuesv1, v2 of parameterxk are similar to each other ifv1 − v2 ≤ ǫ · range(xk).
(m is set to 5 inMONITORM INING.).

To illustrate this, consider the designer-specifications are shown in figure 9. In these
specifications, numthreads is not specified as a relevant parameter. MONITORM INING

uses Bottom-up computation (BUC) as an Iceberg Cubing algorithm, and its internal
working is described as follows.

<component name="disk">

<output_parameter ="IOPS">

<input_parameters>

<parameter name="RW_ratio" />

<parameter name="SR_ratio" />

<parameter name="block_size" func="linear" />

</input_parameters>

</output_parameter>

</component>

Figure 6: Incomplete component specifications.

100 records are randomly selected and plotted in Figure 7. Itis hard to judge whether

num thread and IOPS (output parameter) are related, when the effects of three other pa-
rameters are present.

Figure 7: Plot of IOPS vs. numthread.

As such, in order to identify the relationship between numthread and IOPS, BUC
finds all the records with a certain RWratio and SRratio (but different blocksize), and
plot them in Figure 8 (a). From this plot it is clear that numthread and IOPS are related,
but it is still hard to find how they are related. In Figure 8 (b)BUC plots records with
identical values on all parameters except numthread, and it becomes obvious that IOPS
is a sub-linear function of numthread; regression techniques can be used to the exact
function.

Figure 8: Plot of IOPS vs. numthread by fixing the values of other parameters such as
RW ratio, SRratio.

5. Experimental Evaluation

The current set of experiments serve as a partial proof-of-concept for MONITORM INING.
In these experiments, MONITORM INING was used to create the component model for
a 30-drive RAID 0 Logical Volume running on an IBM FAStT 900 storage controller.
The performance logs consisted of 3168 data-points, each ofwhich has four parameters
(number of threads, read/write ratio, sequential/random ratio, and block size) and two tar-
get values (IOPS and latency). The regression calculationswere performed on a P4 2.8
GHz workstation with 512MB main memory, running Windows XP Professional. The

regression algorithms used in MONITORM INING wereSVM-light ∗ for support vector
regression, and a version of Neural Networks implemented byCMU. In each of the ex-
periments, the data-points are divided into five parts; fourparts are used for training the
regression algorithms and one part for testing the accuracyof the functions.

5.1 Creation of models and identifying function forms

In this experiment, MONITORM INING is given the designer specifications are shown in 9.
Using the monitored data-points, MONITORM INING identifies the relationship functions
between the individual parameters, and the composite function that relates the target value
with all the input parameters. The results are summarized inTable 2.

<component name="disk">

<output_parameter ="Response-time">

<input_parameters>

<parameter name="num_thread" />

<parameter name="RW_ratio" />

<parameter name="SR_ratio" />

<parameter name="block_size" func="linear" />

</input_parameters>

</output_parameter>

</component>

Figure 9: Component specifications where all the relevant parametersare specified.

SVR Neural Networks

Average error 0.393 0.159

Median error 0.352 0.121

Runtime (sec) 360 1.80

Table 2 Predicting component models for complete designer-specifications.

5.2 Evolving the models

For this experiment, we create a data-set in which some aspects of component behav-
ior are made to change over time. We divide our current data-points according to their
sequential/random ratios; they are divided into six partitions in this way, each having a
certain sequential/random ratio (0, 0.2, . . . , 1). Then we randomly choose a partition, and
draw a random number (0 to 400, uniformly distributed) of records from that partition
and add to our new dataset. We repeatedly do this until all records are added. If there
are not enough records in a partition, just add all remainingrecords. Then the parame-
ter of sequential/random ratio is removed from the new dataset. In general, this dataset

∗http://svmlight.joachims.org

can be considered to contains records of different workloads, each having different se-
quential/random ratio. A good adaptive learning method should be able to adapt itself
according to the changes of the component behavior.

The average error and median error with static learning (i.e. models created in test-
ing phase are not refined) was0.203 and0.174 respectively. In the batch mode learning in
which the model is re-generated after everyK records (K = 50, 100, 200, 400, 800).Sim-
ilarly, in the adaptive learning mode, the neural network continuously refines the weights
using back propogation. The accuracy and running time of thetwo experiments are shown
in Figure 10.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 100 1000

E
rr

or

K

Batch, avg err
Batch, med err

Adaptive, avg err
Adaptive, med err

a) Relative Error vs.K

 0

 5

 10

 15

 20

 100 1000

R
un

tim
e

(in
 s

ec
on

ds
)

K

Batch learning
Adaptive learning

b) Runtime vs.K

Figure 10: Accuracy and runtime of batch learning and adaptive learning

From the experimental results, adaptive learning achieveshighest accuracy (higher
than batch learning and even static learning). This is because it keeps adapting the model
to new data when the component changes its behavior. It is quite efficient whenK ≤ 200,
and its accuracy does not improve for larger values ofK.

6. Related Work

Encoding of the domain-specific knowledge has been an activearea of research within
Expert Systems [3]. In system management, the white-box approach for creating domain
knowledge is manifested as Event-Condition-Action (ECA) rules [14] that define the sys-
tem behavior in different system states (originally proposed by Carl Hewitt aspattern-
based procedure invocation[15]). These rules serve as “canned recipes” for automated
management i.e. at run-time, the management software simply determines the rule that is
applicable in the current state, and invokes it. Similarly,the black-box approach is mainly
manifested as Case-Based Reasoning [18, 27], where the management software deter-
mines the action to be invoked by scanning a history of previous system states that are
similar to the current state.

The gray-box approach as proposed in this paper is new to the domain of system man-
agement; there are a few manifestations of the gray-box approach in other domains. For
example the Snowball project [1] extracts information fromthe text; it starts off with
initial sets of patterns, and recursively refines the patterns based on the input text. The

details of the technique are tied to the domain of text extraction and analysis. Another
similar concept is referred asLifelong Learning[23] where the information is continu-
ously evolved using the hypothesis from previous learning tasks.

7. Conclusion and Future Work

Model-based system management is one of the promising approaches to automated sys-
tem management. In a model-based approach, the management decisions are based on
predictions for the behavior of the system, given the load characteristics and configura-
tion parameters. The key requirements for applying the model-based approach in real-
world scenarios are: 1) Models need to simple yet semantically rich for making decisions;
2) Models should be easy to maintain, and update for changes in the system properties;
3) Techniques to handle bootstrapping for the models; evolving the models at run-time
when additional monitoring information is collected; and ability to discover missing sys-
tem parameters on which the model is dependent. Existing model-based frameworks have
a limited scope and not applied comprehensively to the domain of run-time system man-
agement.

The objective of this paper is to address the issues related with representation, creation,
and evolution of models for automated system management. Wepropose MONITORM IN-
ING as a gray-box approach for creating models; it combines designer specifications with
the information generated using machine learning techniques.

As areas of future work, first, we plan to evaluate the abilityof MONITORM INING

to discover missing parameters and the computational complexity of the Iceberg ap-
proach [2]. Second, we want to generalize the MONITORM INING approach to other do-
mains such as web-server management and grid computing – theprimary challenge is
representation of the domain-specific details as models (similar to the component, work-
load, and action models used for storage virtualization).

References
[1] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from largeplain-text

collections. InProceedings of the Fifth ACM International Conference on Digital Libraries,
2000.

[2] Kevin Beyer and Raghu Ramakrishnan. Bottom-up computation of sparse and iceberg cube.
In SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD international conference on Man-
agement of data, pages 359–370. ACM Press, 1999.

[3] J. S. Brown. The low road the middle road and the high road.In P. H. Winston and K. H.
Prendergast, editors,The AI Business, pages 81–90. MIT Press, Cambridge, MA, 1984.

[4] B.G. Buchanan and E.H. Shortliffe, editors.Rule-Based Expert Systems: The MYCIN Ex-
periments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading, Mas-
sachusetts, 1984.

[5] Chris Burges. A tutorial on support vector machines for pattern recognition.Data Mining
and Knowledge Discovery, 2(2):121–167, 1998.

[6] Maria Calzarossa and Giuseppe Serazzi. Workload characterization: A survey.Proc. IEEE,
81(8):1136–1150, 1993.

[7] International Business Machines Corp. Autonomic Computing:IBM’s Perspective on the

State of Information Technology. http://www.research.ibm.com/autonomic/manifesto/, 2001.
[8] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The ponder policy

specification language.Lecture Notes in Computer Science, 1995:18–??, 2001.
[9] E. A. Feigenbaum. The art of artificial intelligence: Themes and case studies of knowledge

engineering. InProc. of the 5th IJCAI, pages 1014–1029, Cambridge, MA, 1977.
[10] M.R. Genesereth and M.L. Ginsberg. Logic Programming.Comm. ACM, 28(9), September

1985.
[11] J.S. Glider, F. Fuente, and W.J. Scales. The software architecture of a san storage control

system. IBM System Journal, 42(2):232, 2003.
[12] C. Green. Application of theorem proving to problem solving. In B. L. Webber and N. J.

Nilsson, editors,Readings in Artificial Intelligence, pages 202–222. Kaufmann, Los Altos,
CA, 1981.

[13] Gartner Group. Total Cost of Storage Ownership – A User oriented Approach. Research
note, Gartner Group, 2000.

[14] F. Hayes-Roth. Rule-based Systems.Comm. ACM, 28(9), September 1985.
[15] C. Hewitt. Procedural embedding of knowledge in planner. In Proc. of the 2nd IJCAI, pages

167–182, London, UK, 1971.
[16] Martin Hofmann, Glen Collins, Juan Vargas, John Bourne, and A. Brodersen. A paradigm for

building diagnostic expert systems by specializing generic device and reasoning models. In
Proc. 1st Int. Conf. on Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems, pages 37–42. ACM Press, 1988.

[17] Raj Jain. The Art of Computer System Performance Analysis. Wiley, 1991.
[18] D.B. Leake. Case-Based Reasoning: Experiences, Lessons and Future Directions. AAAI

Press, 1996.
[19] E. Lupu M. Sloman. Security and management policy specification. IEEE Network, March

2002.
[20] D.A. Pease, J.Menon, B. Rees, L.M. Duyanovich, and B.L.Hillsber. Ibm storage tank-a het-

erogeneous scalable san file system.IBM Systems Journal, 42(2):250–267, 2003.
[21] S.J. Russell and P. Norvig.Artificial Intelligence: a modern approach. Prentice-Hall, 1995.
[22] David Gerand Sullivan. Using probabilistic reasoningto automate software tuning. Septem-

ber 2003.
[23] S. Thrun. Lifelong learning: A case study, 1995.
[24] Nancy Tran and Daniel A. Reed. ARIMA time series modeling and forecasting for adap-

tive i/o prefetching. InProceedings of the 15th international conference on Supercomputing,
pages 473–485. ACM Press, 2001.

[25] S. Uttamchandani, K. Voruganti, S. Srinivasan, J. Palmer, and D. Pease. Polus: Growing stor-
age QoS management beyond a 4-year old kid. InProc. of 3rd File and Storage Technologies
(FAST), March 2004.

[26] D. Verma. Simplifying network administration using policy based management. (2), March
2002.

[27] D. Verma and S. Calo. Goal Oriented Policy Determination. In Proc. 1st Workshop on Algo-
rithms and Architectures for Self-Managing Sys., pages 1–6. ACM, June 2003.

