MONITORMINING: Creating Domain
Knowledge for System Automation using a
Gray-box Approach

Xiaoxin Yin

University of Illinois at Urbana Champaign
Urbana, IL, USA

xyinl@uiuc.edu

Sandeep Uttamchandani

IBM Almaden Research Center
San Jose, CA, USA
sandeepu@us.ibm.com

John Palmer Gul Agha
IBM Almaden Research Center University of Illinois at Urbana Champaign
San Jose, CA, USA Urbana, IL, USA
jdp@us.ibm.com agha@uiuc.edu
Abstract

The effectiveness of automated system management is deperdthe domain-specific
information that is encoded within the management fram&wexisting approaches for
defining the domain knowledge are categorized into whitedmal black-box approaches,
each of which has limitations. White-box approaches defeteaitbd formulas for system
behavior, and are limited by excessive complexity andlbritiss of the information. On
the other hand, black-box techniques gather domain kn@elbgl monitoring the system;
they are error-prone and require an infeasible number ddtitss to converge in real-
world systems.

MONITORMINING is a gray-box approach for creating domain knowledge in-auto
mated system management; it combines simple designerdedpecifications with the
information gathered using machine learning. The desigpecifications enumerate in-
put parameters for the system behavior functions, whileession techniques (such as
Neural Networks, Support Vector Machihase used to derive the mathematical function
that relates these parameters. These functions are ctpstfined at run-time, by pe-
riodically invoking regression on the newly monitored da#®oNITORMINING has the
advantage of reduced complexity of the designer specifieatbetter accuracy of regres-
sion functions due to a reduced parameter set, and seliagakith the changes in the
system. Our initial experimental results of applyin@dMITORMINING are quite promis-

ing.
Keywords

Automated system management, Domain knowledge, Graydumhatques, Autonomic
Computing, Models

1. Introduction

System management today is driven by human administrdtatsontinuously monitor
the system, analyze its behavior, and take correctiveractmensure that it converges to-
wards desired threshold goals for performance, avaitgbsecurity. With the cost of sys-

tem management becoming a significant percentage didtad Cost of OwnershifiL 3],

self-management has become a necessity [7]. The idea ahsgligement is not a new

one — Expert Systems [3] have been used to automate variousintensive processes
such as disease diagnosis [4], fault analysis [16], and sAmimportant lesson learnt by
deploying Expert Systems is summarized by the Knowledgekprie [9]: “The power of

Al programs (i.e. expert systems) to perform at high levélsompetence is primarily a

function of the program’s knowledge of its task domain, apidofithe program’s reason-

ing processesIn simple words, the effectiveness of an automated systelepiendent on
therichnessof domain-specific knowledge encoded within the manageifnamiework.

The focus of this paper is an approach for creating the dokraiwledge required for
automated system management. Existing techniques fodergdomain knowledge fall
into two extremities:

e White-boxapproaches where the system-designer defines detailedléifiO, 12]
or rules [8, 19, 26] to describe the characteristics of thstesy. These techniques are
limited by excessive complexity, and brittleness of the danknowledge to ongoing
changes in the system.

e Black-boxapproaches where the system acquires domain-specific &dgerby mon-
itoring the system behavior and using machine learningnigeies [18, 27]. This ap-
proach is error-prone, and requires an infeasible numbierations for converging in
real-world multi-parameter systems.

MONITORMINING is agray box approactior building domain knowledge; it uses a
combination of simple system-designer specifications thi¢hinformation gathered using
machine learning. The domain knowledge consists of mattieahéunctions (referred to
asmodel3. For each of these models, the designer specificationhésiomain-specific
input parameters, while regression techniques such asaNBi@tworks [21], Support
Vector Machines [5] are used to deduce the exact matherhétioetion that correlates
these parameters. These functions are continuously refinegdh-time by periodically
applying regression to the newly monitored data. The adypes of MONITORMINING
are simplistic designer-defined specifications, nonibnitss, and faster convergence of
the deduced functions by limiting the number of parametensiciered for regression.

This paper addresses the representation, creation, ahdiesaf domain knowledge
for automated system management. To make the discussiametenwe describe the
details in the context of automated storage managementk@heontributions of this
paper are:

e A model-based represention of the domain knowledge fomaated storage manage-
ment.

¢ A methodology to create and evolve the domain knowledgegusgray-box approach.
We also describe an off-the-shelf technique to cater indeteplesigner specifications.

Finally, we describe the initial experimental results ahgsVIONITORMINING for creat-

ing the domain knowledge for a real-world storage systemyset

The outline of the paper is as follows: Section 2 gives thediigure of automated
management in storage systems. Section 3 describes theseapation of the domain
knowledge. Section 4 describes the gray-box approach &atiog the domain knowl-
edge, alongwith details for evolution of the models and fiagdncomplete designer

specifications. Section 5 describes the initial experimlemisults. Section 6 covers the
related work, followed by conclusion and future work.

2. Background: Automated Management in Storage Systems

Table 1 defines the management terminology used in the rédst @aper.

Term Description
Service Defines the desired threshold values for the system's pwudoce, reliabil-
Level ity, security, availability. The current iteration of &®ITORMINING supports
Objec- performance SLOs only. A performance SLO is of the form: tigtwput-
tives threshold@latency-threshold i.e. a request-rate bel@nthihoughput-threshold
(SLO) should have the average response-time below the lateneghibld.

Workload There are multiple applications (such as web-server, ¢-maining on the sys-
tem; the I/O requests generated by each application argedfto as workload.
Workload characteristicsefers to 1/0 access characteristics namely request rate,
average request size, read/write ratio, sequential/rarataess pattern. The data
accessed by the workload is referred to asdthta-set

Corrective Changes the behavior of the system so that it converges deveaiministrator-

Actions defined goals. Actions are categorized irsort-term actionshat tune the sys-
tem without physical movement of data, and can take intaceffiemediately e.g.
data-prefetching, throttlind.ong-term actiongenerally involve physical move-
ment of data, and have a non-negligible transient cost atg-wmhigration, replica-
tion.

Invocation The series of components in the system that are used focseythe workload
path requests.

Table 1 System Management Terminology

Figure 1 shows a production storage system with multipldiegons (such as e-mail,
database, web-server) using the storage resources. Eplitatipn can have different
access characteristics, priorities, and SLOs. The taskstérage virtualization engine
(such as SAN.FS [20], SAN Volume Controller [11]) is to maj #pplication-data to
the available storage resources. A one-time mapping oftdatasources is not optimal
and not feasible in most scenarios because of: Incompliitd information of the access
characteristics, component failures and load surges t@itrat run-time. Thus there is
a need for automated system management to continuouslyvebsmalyze, and act by
invoking corrective actions such as throttling, pre-fatghdata replication, etc.

A management framework invokes corrective actions to mirgrthe effect of system
events such as workload variations, component failured)@ad surges, on the SLOs of
workloads running in the system. Building the action sébectunction is non-trivial as it

Weh-server
Abphoat

Email :
Appﬂ]cation ation Data Warehousing

TR
B e
IR
BESEEEEEELEDD
sy
RIS

Storage Virtualization
Mapping Application—data to Storage Resources

Figure 1: Mapping the data-sets of the workloads to the availableuress

needs to take into account: 1) The cost-benefit of actiortssltependent on the system
state and the parameters values used for action invoc&)ofe workload trends and
load pattern on the system that might make a few actionssitflmsin a given state; thus
there is no universal “rule-of-thumb” for invoking actiar® There are a large number of
possible system states (it is not possible to write politgsfor selecting actions in every
possible system state), and the need to adapt to changesspdtem such as addition of
new components, new application workloads.

A model-based approach for automated system managemempsrdakisions using
prediction functions for the behavior of the system for gil@ad characteristics and con-
figuration parameters [22, 25]. The key challenges withabisroach are the representa-
tion of domain-specific details as prediction functions adwls, creation of these models,
and using the models at run-time to decide the correctiverasetMONITORMINING is a
framework for the representation and creation of selfxdnglmodels.

3. Representation of the Domain Knowledge

The domain knowledge consists of mathematical functiames fiodels) that capture the
system details required for deciding corrective actionsuattime. In the case of stor-
age systems, the domain knowledge consists of models fdhdyesponse time of the
component as a function of incoming load at the compofrhponent modelR) The
load on the individual components in the workload’s invamapath(workload modet)
3) The cost and benefit of action invocati@ttion model) This section covers the details
of each of these models

3.1 Component Model

A component model predicts the response time of the compasea function of the
incoming load at the component. The component’s response is dependent on the
service-time and wait-time incurred by the workload stredrhe service time is a
function of the workload characteristics, and is of the form

Stimew; = c(req_size, req_rate, rw_ratio, random/sequential, cache_hit_rate...)

The wait time represents the time spent in the queue due edéating with other
workload streams arriving at the componentoMTORMINING approximates this non-
trivial computation by estimating the wait time for eachiindual stream as per a multi-
class queueing model [17]. The resultant response timepapnated as follows. The
utilization U of the component is:

n
Utilization (U) = Z Aw Stimew;
=1
where\y; is the arrival rate andtimeyy; is the service-time for the workload stream

W+i. The resultant response tinf&ime of the component for the workload streadi is
represented as:

Stimew;

Rtimey; = U

3.2 Workload models

Representation and creation of workload models has beeatiae area of research [6].
In MONITORMINING, workload models predict the load on each component as éidunc
of the request rate that each workload injects into the sySt®r example, to predict the
rate of requests at componeérariginated by workload:

Componentoad; ; = w; j(workload_request_rate;)

In real scenarios, functiom; ; changes continuously as worklogdchanges or other
workloads change their access patterns (e.g., a worklahdywod temporal locality will
push other workloads off the cache). To account for thesectff MONITORMINING
represents functiom; ; as amoving averagg24] that gets recomputed by regression
everyn sampling periods.

3.3 Action Model

An action model captures the transient costs, and expeetesfibof invoking the action;
these effects are a function of the current system statetendalues of the invocation
parameters. The effect of invoking the action is represkatea change in one of the
following:

1) Component models.g., data prefetching improves the response-time of the co
ponent for sequential workloads, and represented as a eliaittge component model.

2) Workload modelg.g., migration of data reduces the workload'’s dependencth®
current component as data is moved to the new componenis tiggresented as a change
in the workload model.

3) Workload access characteristiesy., the throttling action is represented as a change
in the workload request rate.

In the examples described above, throttling and data pigfeg have a negligible
transient cost. But actions like migration incur the trensicost of reading data from the
source and writing it to the target. Both the transient cestall as the permanent benefit
function are represented in terms of a workload model; #esient cost is formalized as
an additional workload stream on the source and target coes.

4. Creation of the MONITORMINING models

The functions for the component, workload, and action modah potentially consist of a
large number of parameters. For example, in the case of timgraction, the monitoring
infrastructure will collect detailed state informatiorrder of hundreds of parameters)
from indiviual components in the invocation path. A puredildox approach will try to
find a function that relates all of them and will be quite inaete; on the other hand,
the white-box approach would define the exact function bebhatbe relevant subset of
parameters, but would be complex to define and brittle toyktesm changes.

MONITORMINING uses a hybrid approach where the designer defines a list ii#-cor
lated parameters along with a hint of the nature of relatigméas shown in figure 2),
while data regression techniques are used to deduce theédinnthe intuition of MoNiI-
TORMINING is that the list of correlated parameters is dependent cadtual implemen-
tion and is non-brittle w.r.t to the underlying physicalrastructure, while the co-efficents
of the parameter functions are brittle and need to be evavedn-time.

4.1 Designer-defined Specifications

User _ —
Heuristics I MonitorMining
} Data
_I__’ Processor

Regression
Module

System
Monitored
Information

Functions
, (action effects & !
| component performan¢es)

Figure 2: The overall procedure of deriving action and componenttions.

The designer-specifications enumerates a list of relatedtiautput parameters for
the action, component, and workload models €ayameter X is related to the target
Parameter Y Additionally, the specifications can have an optional iartthe type of
relationship e.gThere is a quadratic relationship between Parameter X anduPeter Y.
Figure 3 gives example specifications for the migrationoacti

4.2 Extracting functions using Regression

Using the designer specifications,dMITORMINING analyzes the performance log to
derive the models. The schema for the performance logs isaasFigure 4.

The parameters short-listed by the designer-specificatiom extracted from the per-
formance log and fed to the regression algorithm&NVWroRMINING implements two
approaches for regression, — Support Vector RegressioR) 8] that is relatively easy
to implement, and the traditional Neural Network [21] withdk-propagation.

e The key idea of SVR is to find the balance point between theitrgierror and the
complexity of the function; in other words, it avoids findingmplex functions with

<Action: Migration>
<Transient-behavior>
<output_parameter ="request-rate" @ source>
<input_parameters>
<parameter name="migration_speed" func="linear" />
<parameter name="data_size" />
</input_parameters>
<output_parameter ="request-size" @ source>
<input_parameters>
<parameter name="disks_per_lun">
< parameter name = "stripe_size" />
</input_parameters>
<output_parameter ="read/write_ratio" @ source>
<input_parameters>
<parameter name="workload_characteristics" />
</input_parameters>
<output_parameter ="random/sequential_ratio" @ source>
<input_parameters>
<parameter name="workload_characteristics" />
</input_parameters>
<\Transient-behavior>

<Permanent-behavior>
<output_parameter ="request-rate","request-size", "read/write_ratio",
"random/sequential_ratio" @ source>

<input_parameters>

<CONSTANT />

</input_parameters>
<\Permanent-behavior>
<\Action>

Figure 3: Specifications for the migration action(for simplicity walp enumerate the
source component parameters).

Load Workload

. Action Characteristics I nvocation Workload
Action I nvocation KloadIiD kloadID Kl dID\
workloa workloax 4»{ workloa
actionlD actionlD D j—[: D ‘ ‘
com com e
type workloadID N £ D e
- timestamp comp_role
timestamp complD Crat
request rate
speed comp_role 9 — N m
- read/write ratip Component complD
size
rand/seq rati Performances type
duration yP
block size complD capacity
------------ timestamp speed
latency band width
throughput cache size

Figure 4: The schema of the database of monitored information.

low error only on training data but high error on real worldal&VR is able to identify
linear functions, polynomial functions, and functions dfitrary shapes as directed by
user. It is usually inefficient for large datasets.

e Neural networks can find functions of arbitrary shapes bytdg its network struc-
ture with the data. It is efficient and can perform reinforeslearning to adapt to
changing environments.The structure of a neural netwakasvn in Figure 5. A neu-
ral network contains an input layer, one or more hidden kyand an output layer.

Input layer Hidden layer Output layer

@ output

real value

) 7 —
- ot feedback
AN /
s N L’

| SO

~ - -~ Update weights~ « _ - -~

Figure 5: Adaptive learning of neural networks.

MONITORMINING uses a brute force approach to determine the function (i thees
designer specifications do not specify them). It applidedkht function forms to the data
and chooses one with the “best-fit.” The list of candidatecfioms used are: (1) linear
(z), (2) quadratic{? + ax), (3) power ¢2), (4) reciprocal g), (5) logarithm [n(x)), (6)
exponential ¢*), and (7) simple combinations of two of them, such as reciartnear
(L)

+In summary, neural networks and support vector machinebatmidentify functions
of arbitrary shapes. But they usually have better perfocaamvhen the data can be well
modelled by some simple models. The time complexity for Menetworks should be
linear to the data size (but usually it will iterate many rdaror optimization). The time
complexity for support vector machines is quadratic wauinber of data points.

4.3 Bootstrapping and Evolution of models

The initial baseline values for the action, workload, ancthponent models are generated

as follows:

e Component models: The initial values are generated eitber the component’s per-
formance specifications provided by the vendor, or by rugmalibration tests and
measuring the component’s behavior for different permaniatof workload charac-
teristics. The calibration tests generate 1/0 requests afferent permutation o&re-
questsize, readwrite_size, randonssequentiafatio, numthreads-. For each of the
IO permutations, the iops, wait-time, and service-timentets are collected from the
component.

e Action models: The effect of action is mainly dependent anithplementation details
of the actions rather than the deployment specific detassukh, the baseline values
for the action models can be pre-packaged by running in€experiments to invoke
the action for different workload characteristics and tation parameter values.

e Workload models: The initial values of the workload modsl®ased on libraries of
workload characteristics for different applications sashe-mail, web-server, online-
transactions, etc.

The models are continuously updated using the newly matahis improves the
accuracy of the regression functions (increasing the nuwitaata-points that have been
seen in the past), and also accounts for changes in the sysggmcially the workload
models). Evolving models using neural networks is basederdifference between the
predicted value and the actual monitored value; this difiee is used foback propa-
gationi.e. change the link weights between units of different fay®ONITORMINING
uses two approaches to evolve the models: 1) A computaljoefficient approach is to
invoke regression after every additional data-points are collected from the system; this
approach is used for the component and action models as theglatively static com-
pared to the workload models 2) Another approach is to ugtatmodel after every pre-
diction; in this the difference between the predicted valod the actual value is used as
an error-feedback to adjust the coefficient values in theghaesing re-enforcement based
neural networks. The experimental section compares eesiittoth these approaches.

4.4 Handling incomplete specifications

The system designer may not provide a complete set of rdl@amameters. Missing
parameters lead to inaccuracy of the models and reflectgerldifferences between the
predicted value and the actual value. A data mining approaldédiceberg Cubing?] is
used for this purpose. The approach can be formally state@iasn a set of records with
K parametersey, . .., xx and a target valuey, find out all groups of at least: records
that have identical or similar values on at least — 6 parametersd = 1 or 2). We say
two valuesv;, vo of parameterr; are similar to each other if; — vo < € - range(xy).
(m is set to 5 iNMONITORMINING.).

To illustrate this, consider the designer-specificatiaiessiiown in figure 9. In these
specifications, nunthreads is not specified as a relevant parametemNMORMINING
uses Bottom-up computation (BUC) as an Iceberg Cubing #ltgor and its internal
working is described as follows.

<component name="disk">
<output_parameter ="IOPS">
<input_parameters>
<parameter name="RW_ratio" />
<parameter name="SR_ratio" />
<parameter name="block_size" func="linear" />
</input_parameters>
</output_parameter>
</component>

Figure 6: Incomplete component specifications.

100 records are randomly selected and plotted in Figurei§ hiérd to judge whether

numthread and IOPS (output parameter) are related, when teetefhf three other pa-
rameters are present.

0P8

*

(X R

He

(X3

50

Figure 7: Plot of IOPS vs. nunthread.

As such, in order to identify the relationship between nilmead and IOPS, BUC
finds all the records with a certain RVétio and SRratio (but different blocksize), and
plot them in Figure 8 (a). From this plot it is clear that ntinnead and IOPS are related,
but it is still hard to find how they are related. In Figure 8 B)C plots records with
identical values on all parameters except ntlmead, and it becomes obvious that IOPS
is a sub-linear function of nurthread; regression techniques can be used to the exact

function.

1088

s000
4500
4000
2500
3000
2500
z000
1500

10PS

3000

2000

1500

1000

* £
1000 : t %6
soo0 2 =2
= -> -
[a] o

a) with different block sizes

1111111

b) with a certain block size

Figure 8: Plot of IOPS vs. nunthread by fixing the values of other parameters such as
RW._ratio, SRratio.

5. Experimental Evaluation

The current set of experiments serve as a partial proobotept for MONITORMINING.

In these experiments, ®NITORMINING was used to create the component model for
a 30-drive RAID 0 Logical Volume running on an IBM FAStT 90M®sige controller.
The performance logs consisted of 3168 data-points, eaulnich has four parameters
(number of threads, read/write ratio, sequential/randatio rand block size) and two tar-
get values (IOPS and latency). The regression calculati@ne performed on a P4 2.8
GHz workstation with 512MB main memory, running Windows XRofessional. The

regression algorithms used indMIITORMINING were SVM-light* for support vector
regression, and a version of Neural Networks implemente@ly. In each of the ex-
periments, the data-points are divided into five parts; fmarts are used for training the
regression algorithms and one part for testing the accwhitye functions.

5.1 Creation of models and identifying function forms

In this experiment, MNITORMINING is given the designer specifications are shown in 9.
Using the monitored data-points,dflITORMINING identifies the relationship functions
between the individual parameters, and the compositeibimtttat relates the target value
with all the input parameters. The results are summarizddilite 2.

<component name="disk">
<output_parameter ="Response-time">
<input_parameters>
<parameter name="num_thread" />
<parameter name="RW_ratio" />
<parameter name="SR_ratio" />
<parameter name="block_size" func="linear" />
</input_parameters>
</output_parameter>
</component>

Figure 9: Component specifications where all the relevant paramaterspecified.

SVR Neural Networks

Average error 0.393 0.159
Median error 0.352 0.121
Runtime (sec) 360 1.80

Table 2 Predicting component models for complete designer-spatidins.

5.2 Evolving the models

For this experiment, we create a data-set in which some sspécomponent behav-
ior are made to change over time. We divide our current datatp according to their
sequential/random ratios; they are divided into six part# in this way, each having a
certain sequential/random rati@, (0.2, . . ., 1). Then we randomly choose a partition, and
draw a random number (0 to 400, uniformly distributed) oforels from that partition
and add to our new dataset. We repeatedly do this until alirdscare added. If there
are not enough records in a patrtition, just add all remaingogrds. Then the parame-
ter of sequential/random ratio is removed from the new @atds general, this dataset

*http://svmlight.joachims.org

can be considered to contains records of different worldpadch having different se-
guential/random ratio. A good adaptive learning methodukhbe able to adapt itself
according to the changes of the component behavior.

The average error and median error with static learning ifi@dels created in test-
ing phase are not refined) wa203 and0.174 respectively. In the batch mode learning in
which the model is re-generated after ev&ryecords £ = 50, 100, 200, 400, 800). Sim-
ilarly, in the adaptive learning mode, the neural netwonktaauiously refines the weights
using back propogation. The accuracy and running time aftbexperiments are shown
in Figure 10.

0.5 T 20 T

X

Batch, avg err—+— Batch learning—"—
045 Batch, med err---x---] Adaptive learning--7%---
04| Adaptive, avg err---x--- | S/
- tive, med err---& 2 15t g E
035 i g
0.3F i]
5) e Hommmmeeee Hmmmmmmmmmn X 2 /
S 025 x 1 < 10 X 1
I o P
0.2 ... emennneneens Koo Keomeeanen % =
LR b g | X |
oa s i e
X
0.05 E e
0 L 0 L
100 1000 100 1000
K K
a) Relative Error vsK b) Runtime vs K

Figure 10: Accuracy and runtime of batch learning and adaptive learnin

From the experimental results, adaptive learning achibigisest accuracy (higher
than batch learning and even static learning). This is beedlkeeps adapting the model
to new data when the component changes its behavior. Ittie gfficient whernk' < 200,
and its accuracy does not improve for larger valuek of

6. Related Work

Encoding of the domain-specific knowledge has been an aate® of research within
Expert Systems [3]. In system management, the white-bosoagp for creating domain
knowledge is manifested as Event-Condition-Action (EQAgs [14] that define the sys-
tem behavior in different system states (originally praggbby Carl Hewitt apattern-
based procedure invocatidi5]). These rules serve as “canned recipes” for automated
managementi.e. at run-time, the management softwaresuhepérmines the rule that is
applicable in the current state, and invokes it. SimilaHg, black-box approach is mainly
manifested as Case-Based Reasoning [18, 27], where thegerarat software deter-
mines the action to be invoked by scanning a history of prevgystem states that are
similar to the current state.

The gray-box approach as proposed in this paper is new tootinaich of system man-
agement; there are a few manifestations of the gray-booagprin other domains. For
example the Snowball project [1] extracts information frtme text; it starts off with
initial sets of patterns, and recursively refines the pastdrased on the input text. The

details of the technique are tied to the domain of text eivacand analysis. Another
similar concept is referred dsfelong Learning[23] where the information is continu-
ously evolved using the hypothesis from previous learrésgs.

7. Conclusion and Future Work

Model-based system management is one of the promising apipes to automated sys-
tem management. In a model-based approach, the manageewisibds are based on
predictions for the behavior of the system, given the loaaratteristics and configura-
tion parameters. The key requirements for applying the mhbdsed approach in real-
world scenarios are: 1) Models need to simple yet semalytiéeh for making decisions;
2) Models should be easy to maintain, and update for chamgéisystem properties;
3) Techniques to handle bootstrapping for the models; @wplthe models at run-time
when additional monitoring information is collected; arili#y to discover missing sys-
tem parameters on which the model is dependent. Existingmased frameworks have
a limited scope and not applied comprehensively to the dowfaiun-time system man-
agement.

The objective of this paper is to address the issues relatbdepresentation, creation,
and evolution of models for automated system managemeniroymse MONITORMIN-
ING as a gray-box approach for creating models; it combinegdesspecifications with
the information generated using machine learning teclasiqu

As areas of future work, first, we plan to evaluate the abiityVONITORMINING
to discover missing parameters and the computational aodtplof the Iceberg ap-
proach [2]. Second, we want to generalize theMTORMINING approach to other do-
mains such as web-server management and grid computing prithary challenge is
representation of the domain-specific details as modatsiésito the component, work-
load, and action models used for storage virtualization).

References

[1] Eugene Agichtein and Luis Gravano. Snowball: Extragtielations from largeplain-text
collections. InProceedings of the Fifth ACM International Conference ogifai Libraries,
2000.

[2] Kevin Beyer and Raghu Ramakrishnan. Bottom-up compniaif sparse and iceberg cube.
In SIGMOD '99: Proceedings of the 1999 ACM SIGMOD internaticc@nference on Man-
agement of datgpages 359-370. ACM Press, 1999.

[3] J. S. Brown. The low road the middle road and the high roadP. H. Winston and K. H.
Prendergast, editor¥he Al Businespages 81-90. MIT Press, Cambridge, MA, 1984.

[4] B.G. Buchanan and E.H. Shortliffe, editorRkule-Based Expert Systems: The MYCIN Ex-
periments of the Stanford Heuristic Programming Projedddison-Wesley, Reading, Mas-
sachusetts, 1984.

[5] Chris Burges. A tutorial on support vector machines fattgrn recognition.Data Mining
and Knowledge Discover(2):121-167, 1998.

[6] Maria Calzarossa and Giuseppe Serazzi. Workload cteaiaation: A survey.Proc. IEEE
81(8):1136-1150, 1993.

[7] International Business Machines Corp. Autonomic CotimgulBM’s Perspective on the

(8]
(9]
[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]
[18]

[19]
[20]

[21]
[22]

[23]
[24]

[25]

[26]

[27]

State of Information Technology. http://www.researcimibom/autonomic/manifesto/, 2001.
Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Mo8loman. The ponder policy
specification languagelecture Notes in Computer Sciend®95:18-??, 2001.

E. A. Feigenbaum. The art of artificial intelligence: Thes and case studies of knowledge
engineering. IProc. of the 5th IJCAlpages 1014-1029, Cambridge, MA, 1977.

M.R. Genesereth and M.L. Ginsberg. Logic Programmi@g@mm. ACM28(9), September
1985.

J.S. Glider, F. Fuente, and W.J. Scales. The softwarkitacture of a san storage control
system.|BM System Journald2(2):232, 2003.

C. Green. Application of theorem proving to problemvsiog. In B. L. Webber and N. J.
Nilsson, editorsReadings in Atrtificial Intelligencepages 202—-222. Kaufmann, Los Altos,
CA, 1981.

Gartner Group. Total Cost of Storage Ownership — A Usented Approach. Research
note, Gartner Group, 2000.

F. Hayes-Roth. Rule-based Systen@mm. ACM28(9), September 1985.

C. Hewitt. Procedural embedding of knowledge in planra Proc. of the 2nd IJCAlpages
167-182, London, UK, 1971.

Martin Hofmann, Glen Collins, Juan Vargas, John Bouarel A. Brodersen. A paradigm for
building diagnostic expert systems by specializing genéevice and reasoning models. In
Proc. 1st Int. Conf. on Industrial and Engineering Applicais of Artificial Intelligence and
Expert Systemgages 37-42. ACM Press, 1988.

Raj Jain. The Art of Computer System Performance Analyg#ley, 1991.

D.B. Leake. Case-Based Reasoning: Experiences, Lessons and Futugetidits AAAI
Press, 1996.

E. Lupu M. Sloman. Security and management policy dipation. IEEE Network March
2002.

D.A. Pease, J.Menon, B. Rees, L.M. Duyanovich, and Blillsber. 1bm storage tank-a het-
erogeneous scalable san file systdBIM Systems Journa#t2(2):250-267, 2003.

S.J. Russell and P. NorvidArtificial Intelligence: a modern approachPrentice-Hall, 1995.
David Gerand Sullivan. Using probabilistic reasontogautomate software tuning. Septem-
ber 2003.

S. Thrun. Lifelong learning: A case study, 1995.

Nancy Tran and Daniel A. Reed. ARIMA time series modgland forecasting for adap-
tive i/o prefetching. IrProceedings of the 15th international conference on Supeptiting
pages 473-485. ACM Press, 2001.

S. Uttamchandani, K. Voruganti, S. Srinivasan, J. Rajand D. Pease. Polus: Growing stor-
age QoS management beyond a 4-year old kidPrbe. of 3rd File and Storage Technologies
(FAST) March 2004.

D. Verma. Simplifying network administration usingljpy based management. (2), March
2002.

D. Verma and S. Calo. Goal Oriented Policy Determinatitn Proc. 1st Workshop on Algo-
rithms and Architectures for Self-Managing Sysmges 1-6. ACM, June 2003.

