
Using Language Inference to Verify

omega-regular Properties

Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, Gul Agha ?

Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, USA
{vardhan,ksen,vmahesh,agha}@cs.uiuc.edu

Abstract. A novel machine learning based approach was proposed re-
cently as a complementary technique to the acceleration based meth-
ods for verifying infinite state systems. In this method, the set of states
satisfying a fixpoint property is learnt as opposed to being iteratively
computed. We extend the machine learning based approach to verify-
ing general ω-regular properties that include both safety and liveness.
To achieve this, we first develop a new fixpoint based characterization
for the verification of ω-regular properties. Using this characterization,
we present a general framework for verifying infinite state systems. We
then instantiate our approach to the context of regular model checking
where states are represented as strings over a finite alphabet and the
transition relation of the system is given as a finite state transducer; un-
like previous learning based algorithms, we make no assumption about
the transducer being length-preserving. Using Angluin’s L* algorithm
for learning regular languages, we develop an algorithm for verification
of ω-regular properties of such infinite state systems. The algorithm is
a complete verification procedure for systems for whom the fixpoint can
be represented as a regular set. We have implemented the technique in
a tool called Lever and use it to analyze some examples.

1 Introduction

Automated verification of systems with respect to temporal properties involves
computing fixpoints of functionals on sets of states of the system. This is of-
ten calculated by iteratively computing approximations to the fixpoint, until
the process converges. When verifying infinite state systems, this iterative com-
putation must necessarily be performed symbolically, using a suitably chosen
representation for sets of states. However, since fixpoint computations are no
longer guaranteed to converge within finitely many steps, a variety of accelera-
tion methods, such as widening [15, 4] and abstraction [3], have been proposed.
These methods have been used successfully to verify many practical examples
and can be used to obtain complete verification procedures for special subclasses
of systems (such as bounded local depth or simple transition relations [10]).

? The third author was supported in part by DARPA/AFOSR MURI Award F49620-
02-1-0325 and NSF 04-29639. The other three authors were supported in part by
DARPA IPTO TASK Program (contract F30602-00-2-0586), ONR Grant N00014-
02-1-0715, and Motorola Grant MOTOROLA RPS #23 ANT

Recently, a complementary, machine learning based approach has been in-
dependently proposed in [17] and [9]. In this approach, the fixpoint is learnt
from examples of states belonging to the fixpoint and states not belonging to
the fixpoint. The advantage of the learning based approach is that termination
does not depend on how long it takes to converge to the fixpoint, and hence
this approach yields a complete verification procedure even when the fixpoint
does not converge within a finite bound. Second, because intermediate approx-
imations to the fixpoint are never computed, it avoids the space overhead of
storing fixpoint approximations that may have a large symbolic representation.
Preliminary experimental results based on this approach are promising [17, 9,
16].

In this paper, we present a general framework to verify infinite state systems
with respect to specifications presented as non-deterministic Büchi automata.
One of the central requirements of our framework is a learning algorithm that
can learn concepts encoded using a chosen symbolic representation. The learning
algorithm is used to learn the fixpoint of a specific function, such that the initial
state of the system belongs to the learnt set if and only if the system satisfies
the specification. This yields a complete verification procedure, provided the
fixpoint can be represented in the chosen representation. We then instantiate
the framework to the specific context of regular model checking, where states are
encoded as strings over some finite alphabet, and the system’s transition relation
is presented as a transducer over such strings. Unlike previous work in this area,
we do not assume that the transducer is length preserving. If the fixpoint of
our functional can be expressed as a regular language, then our algorithm is
guaranteed to terminate and either prove the system to be correct or demonstrate
that it is faulty. We use Angluin’s L* [2] algorithm to learn the regular set
representation of the fixpoint.

The results presented here significantly advance the state of the art in learn-
ing based verification. First, our method verifies ω-regular properties which can
express safety as well as liveness properties. This generalizes our previous work on
safety properties reported in [17, 16]. Second, our instantiation to regular model
checking is not confined to analyzing systems such as FIFO automata. We also
do not need the transition relation to be restricted to be length-preserving as has
been assumed in some other approaches such as [9]. Moreover, our general frame-
work can potentially be used to verify systems symbolically represented using
polyhedra or ellipsoids, not just regular languages, provided appropriate learning
algorithms can be plugged in. Third, our algorithm for checking containment
of the system’s trace language in the specification automata’s language, is not
based on discovering loops where final states of the automata are visited infinitely
often (as is the case in [9]). Thus, our algorithm will successfully identify faulty
systems, even when there is no ultimately periodic execution that witnesses the
violation. This is important because for general infinite state systems, it is often
the case that there is no such ultimately periodic execution witnessing the viola-
tion of a liveness property. Finally, since we use Angluin’s L* algorithm, we are
guaranteed to not only learn the smallest automaton representing the fixpoint,

but are also guaranteed to only make polynomially many calls to the learning
algorithm.

The rest of the paper is organized as follows. We first outline results that
are closely related to this paper. In Section 2, we introduce basic concepts and
notation that are used in the paper. The general learning based verification
framework for ω-regular languages is presented in Section 3. We first identify a
functional whose fixpoint helps us verify ω-regular properties (Section 3.1) and
then show how a learning algorithm can be used to compute the fixpoint of this
functional (Section 3.2). In Section 4, we instantiate this general framework to
the specific context of regular model checking, where states are represented as
strings over a finite alphabet and the system’s transition relation is represented
as a transducer. We give detailed algorithms for the various operations that
are needed in the learning based algorithm. Finally, in Section 5 we discuss the
analysis of two examples using the implementation of this verification method
in a tool called Lever and present our conclusions in Section 6.

Related Work. We introduced the learning to verify approach in [17], where
we used RPNI [12] to learn the regular set from positive and negative exam-
ples without active queries. In [16], we improved our learning procedure for
FIFO automata by using a more powerful active learning framework and a bet-
ter encoding for witnesses for membership queries. Concurrently and indepen-
dently of our work, Habermehl et al. [9] have also proposed a learning based
approach for verification of systems whose transition can be represented by a
length-preserving transducer. The algorithm presented there crucially depends
on the length-preserving nature of the transition relation for its completeness.
An earlier use of regular inference techniques for reachability in parameterized
rings of processes also appears in [8]. Verification of ω-regular properties for in-
finite state systems has also been addressed in [4] and [13]. Abdulla et al. [1]
present a “two-dimensional” modal logic called LTL(MSO) for verification of
liveness properties. The above approaches rely on loop detection for checking
liveness and assume that the transition relation is length preserving. Recently,
Bouajjani et al. [5] have analyzed liveness properties of non-length preserving
systems using a notion of simulation between states.

2 Preliminaries

In this section, we present the learning framework that we will consider in this
paper and basic definitions of Kripke structures and Büchi automata.

2.1 Learning with membership and equivalence queries

A learning algorithm is usually set in a framework which describes the types
of input data and queries available to the learner. In the framework of active
learning [2]), the learning algorithm is given access to a knowledgeable teacher,
often called a minimally adequate teacher. The knowledgeable teacher can be

thought of as a pair of oracles: a membership oracle and an equivalence oracle.
The membership oracle provides answers to queries about whether an example
belongs to the concept being learnt or not. The equivalence oracle is a more
powerful oracle which answers question about whether a hypothesis proposed by
the learning algorithm is indeed equivalent to the concept being learnt. If at some
point the learning algorithm’s hypothesis is deemed correct by the equivalence
oracle then the learning process stops. If on the other hand, the learner submits a
hypothesis which is not equivalent to the target concept, the equivalence oracle
not only says no, but also provides a counter-example to demonstrate when
the hypothesis is wrong. The counter-example is either an example belonging
to the hypothesis but not to the target concept, or it is an example belonging
to the target concept but not to the submitted hypothesis. The active learning
framework can be contrasted with the passive learning framework where the
learner is simply provided a set of examples labeled as either belonging to the
target concept or not; there is no knowledgeable teacher involved. The active
learning algorithm is a powerful framework that in many cases admits efficient
learning of concepts which otherwise cannot be learnt passively.

Our learning based verification approach uses a learning algorithm in the
active learning framework. In particular, when we instantiate our learning based
approach to verify a class of infinite state systems, we use a classical algorithm
due to Angluin [2] which learns the smallest automaton recognizing the regular
language, when it is allowed to interact with a knowledgeable teacher. Angluin’s
L* algorithm is also highly efficient; it can be shown that the number of queries
made to the membership and equivalence oracles by the learning algorithm is
bounded by a polynomial in the size of the smallest DFA recognizing the regular
language. The main idea behind Angluin’s L* algorithm is to systematically
explore strings in the alphabet for membership and create a DFA with minimum
number of states to make a conjecture for the target set. If the conjecture is
incorrect, the string returned by the teacher is used to make corrections, possibly
after more membership queries. The algorithm maintains a prefix closed set
S representing different possible states of the target DFA, a set SA for the
transition function consisting of strings from S extended with one letter of the
alphabet, and a suffix closed set E denoting experiments to distinguish between
states. An observation table with rows from (S ∪ SA) and columns from E stores
results of the membership queries for strings in (S ∪ SA).E and is used to create
the DFA for a conjecture.

2.2 Kripke structures and Büchi automaton

We use Kripke structure to model the system being verified and Büchi automaton
for the specification. We now formally define these.

Kripke structure. A Kripke structure K is a quintuple (Sk, Σ, Rk, Sk
0 ,L) where

Sk is the set of (possibly infinite) states, Σ is a finite alphabet, Rk ⊆ Sk × Sk

is the (total) transition relation, Sk
0 ⊆ Sk is the set of initial states and L :

Sk → Σ is the labeling function. We restrict ourselves to Kripke structures that

are finitely branching, i.e., for any state s, the set {s′ | Rk(s, s′)} is finite. We
say s → s′ iff (s, s′) ∈ Rk. A path starting from state s is an infinite sequence
s0, s1, s2 . . . such that s = s0 and for every i, (si, si+1) ∈ Rk. A path of a Kripke
structure K is just a path starting from some initial state s ∈ Sk

0 . The set of all
paths of K will be denoted by P(K). For a path π = s0, s1, s2, . . ., KTrace(π) is
the sequence of labels `0, `1, `2, . . . such that for every i, L(si) = `i. For a set of
paths Π , KTrace(Π) is taken to be {KTrace(π) | π ∈ Π}.

Büchi automaton. A Büchi automaton [14] M is a quintuple (Sm, Σ, Sm
0 , δ, F m)

where Sm is a finite set of states, Sm
0 ⊆ Sm is the set of initial states, δ :

Sm ×Σ → 2Sm

is the transition function, F m ⊆ Sm is a set of accepting states.
For an infinite word v = v0, v1, v2, . . . ∈ Σω, the run of M on v is a sequence of
states ρ = s0, s1, s2, . . ., such that si+1 ∈ δ(si, vi) for every i. An infinite word v

is accepted by M if there is some run ρ of M on v such that some state s ∈ F m

appears infinitely often in ρ. The language accepted by M , which we denote by
S(M), is the set of all words v accepted by M . A set of infinite words L is said
to be ω-regular if there is some Büchi automaton such that L = S(M).

CTL∗ Various modal and temporal logics such as CTL∗ are often used for spec-
ifying the acceptable behaviors of a system. For a comprehensive introduction
to this subject, the reader is referred to [7]. In this paper we will be concerned
with only one specific CTL∗ property, namely EGFp. A state s in a Kripke
structure K satisfies EGFp if and only if there exists a path π = s0, s1, s2, . . .

starting from s such that for all i, L(sj) = p for some j ≥ i; in other words, the
path encounters states labelled p infinitely often. When s satisfies EGFp, we
will say s, K |= EGFp; when K is clear from the context we will simply write
this as s |= EGFp. We will denote by [[EGFp]]K the set of all states s, such that
s, K |= EGFp.

Satisfying Specifications. Similar to the traditional approach used in model
checking using automata theory, we assume that the system specification is given
in terms of the bad behaviors that the implementation must not exhibit. The
bad behaviors are specified using a Büchi automaton. For a Kripke structure
K and a Büchi automaton M , K is said to be correct with respect to M iff
KTrace(P(K)) ∩ S(M) = ∅. Since Büchi automata are closed under comple-
mentation even if we are given the specification as an automaton Mg specifying
the good behaviors, we can complement Mg to get M which specifies the bad
behaviors.

We will reduce the problem of checking if the system satisfies the specification
to the problem of checking if the CTL∗ formula EGFp is satisfied. In order to
do this, we first define the Kripke structure obtained by taking the cross product
of a Kripke structure and a Büchi automaton.

Definition 1. The cross-product of a Büchi automaton M = (Sm, Σ, Sm
0 , δ, F m)

and a Kripke structure K = (Sk, Σ, Rk, Sk
0 ,L) is the Kripke structure M ×K =

(Sm × Sk, {f, f̃}, R′, Sm
0 × Sk

0 ,L′). Here, ((sm
1 , sk

1), (s
m
2 , sk

2)) ∈ R′ if and only if

(sk
1 , sk

2) ∈ Rk and sm
2 ∈ δ(sm

1 ,L(sk
1)). A state (sm, sk) in M ×K is labelled by f

if sm ∈ F m and by f̃ otherwise.

Lemma 1. There is a path π = (sm
0 , sk

0)(sm
1 , sk

1)(sm
2 , sk

2) . . . in the product Kripke
structure M ×K if and only if sm

0 sm
1 sm

2 . . . is a run in the Büchi automaton M

on KTrace(sk
0sk

1sk
2 . . .) where sk

0sk
1sk

2 . . . is a path in K.

Proposition 1. For an automaton M , KTrace(P(K)) ∩ S(M) = ∅ if and only
if [[EGFf]]M×K ∩ (Sm

0 × Sk
0) = ∅ (In other words, no initial state of M × K

satisfies EGFf).

Proof. Suppose KTrace(P(K))∩S(M) 6= ∅. Then there is a path π ∈ P(K) such
that KTrace(P(K)) is accepted by M . Let sm

0 sm
1 sm

2 . . . be the accepting run in
M . By Lemma 1, there is a path π = (sm

0 , sk
0)(sm

1 , sk
1)(s

m
2 , sk

2) . . . in M ×K. But
since an accepting run of a Büchi automata visits a accepting state infinitely
often, then by the product construction, the path π = (sm

0 , sk
0)(sm

1 , sk
1)(sm

2 , sk
2) . . .

in M ×K visits states labelled f infinitely often. Thus, M ×K satisfies EGFf .
If M×K satisfies EGFf then there is a path π = (sm

0 , sk
0)(sm

1 , sk
1)(sm

2 , sk
2) . . .

which infinitely often visits states labeled f . By Lemma 1, there is a run sm
0 sm

1 sm
2 . . .

in M on KTrace(sk
0sk

1s
k
2 . . .). This is an accepting run because the product con-

struction labels a state (sm, sk) ∈ M × K as f only if sm is an accepting state.
But then M accepts KTrace(sk

0sk
1sk

2 . . .). Hence, KTrace(P(K)) ∩ S(M) 6= ∅.

3 Learning to verify ω-regular properties

In this section, we present a general framework to verify a system described as
a Kripke structure K. We assume that we are given a Büchi automaton M that
describes the set of behaviors that the system K must not exhibit. Recall, that in
Section 2.2, we observed that the problem of checking if KTrace(P(K))∩S(M) =
∅ can be reduced to the problem of checking if an initial state of M ×K satisfies
EGFf . We first characterize [[EGFf]] using fixpoints of a functional that we
define in Section 3.1. Next, we show that the fixpoint is unique and has certain
key properties that we need for our problem. Finally, we will show how a learning
algorithm can be used to learn the fixpoint, and therefore help verify if K satisfies
M .

3.1 Fixpoint characterization of EGFf

From now on, we assume that we are interested in checking if some initial state
of a Kripke structure K = (S, {f, f̃}, R, S0,L) satisfies EGFf . Traditionally, the
fixpoint characterization of EGFf is given by νZ1.EX(µZ2.Z1 ∧ (f ∨ EXZ2))
(see [6]). Notice that this formula involves nesting of the fixpoint operators which
we wish to avoid in our learning-based technique for technical reasons. Therefore,
we develop a novel characterization of EGFf that does not use nesting. Further,
we also obtain a unique fixpoint which make it possible to answer equivalence

queries exactly. As far as we know, this is a new characterization and may be of
independent interest. We now proceed to describe this fixpoint.

Let X be a set of triples (s, i, j) such that s ∈ S and i, j ∈ N, where N denotes
the set of natural numbers. We define the functional Γ : 2S×N×N → 2S×N×N such
that Γ (X) = Γ1(X) ∪ Γ2(X) ∪ Γ3(X), where

Γ1(X) = {(s, 0, j) | L(s) = f and j ∈ N}

Γ2(X) = {(s, i, j) | L(s) = f̃ and ∃s′. s → s′ ∃j′ < j. (s′, i, j′) ∈ X}
Γ3(X) = {(s, i, j) | L(s) = f and ∃s′. s → s′ ∃j′ < j. (s′, i − 1, j′) ∈ X}

The intuition behind the definition of Γ is as follows. Consider a property
η

i,j
f such that a state s satisfies η

i,j
f if there is a path of length j such that we

encounter (at least) i+1 states that are labeled f . Formally, s |= η
i,j
f iff there is a

finite path s0, s1, s2, . . . , sj from state s such that there are indices k1, k2, . . . ki+1

such that L(sk`
) = f for every 1 ≤ ` ≤ i+1. Now the intuition behind Γ is that

if X is a fixpoint of Γ and (s, i, j) ∈ X then s |= η
i,j
f

Clearly, Γ is monotonic and hence has fixpoints. In addition, we can show
that Γ has a unique fixpoint. This is the objective of the next few observations.

Lemma 2. Let X be a fixpoint of Γ . The following two facts hold about elements
of X.

1. If L(s) = f̃ then ∀i ≥ 0.∀j. (s, i, j) ∈ X if and only if ∃s′. s → s′ ∃j′ <

j. (s′, i, j′) ∈ X

2. If L(s) = f then ∀i ≥ 1.∀j. (s, i, j) ∈ X if and only if ∃s′. s → s′ ∃j′ <

j. (s′, i− 1, j′) ∈ X

Proof. The results follow from the definition of the fixpoint under Γ . We illus-
trate this for one direction of 1; the proof for other cases is similar. Suppose
L(s) = f̃ and suppose (s, i, j) ∈ X . If ∃s′. s → s′ ∃j′ < j. (s′, i, j′) ∈ X does not
hold then (s, i, j) 6∈ Γ (X) which contradicts the fact that X is a fixpoint.

Proposition 2. If X1 is a fixpoint of Γ and X2 is also a fixpoint of Γ then
X1 ⊆ X2. Hence there is a unique fixpoint of Γ .

Proof. Let (s, i, j) ∈ X1. We show that then (s, i, j) ∈ X2. The proof will proceed
by induction on i and j.

Consider the base case when i = 0. We will prove the claim by induction on
j. Clearly (s, 0, 0) ∈ X1 iff L(s) = f iff (s, 0, 0) ∈ X2. Suppose the claim holds
for (s, 0, j′) for all j′ < j. Consider (s, 0, j) ∈ X1. If L(s) = f then (s, 0, j) ∈ X2

for every j by the definition of Γ1. Now if L(s) = f̃ then by Lemma 2, it must
be the case that there is s′ and j′ such that s → s′, j′ < j and (s′, 0, j′) ∈ X1.
By the induction hypothesis, we know that (s′, 0, j′) ∈ X2. Again, by Lemma 2,
this means that (s, 0, j) ∈ X2.

Assume that for every i′ < i and for every j′, if (s, i′, j′) ∈ X1 then (s, i′, j′) ∈
X2. The induction step for (s, i, j) is proved by induction on j. For the base case
when j = 0, we observe that (s, i, 0) is not a member of any fixpoint of Γ

(Lemma 2). The proof of the induction step is similar to the case of i = 0, and
is skipped in the interests of space.

By symmetry, X2 ⊆ X1, hence X1 = X2 giving the uniqueness of the fixpoint
for Γ .

Henceforth, we use X to denote the unique fixpoint of Γ . We are now ready
to state the proposition that formally proves our intuition behind defining Γ .

Proposition 3. Suppose X is the fixpoint of Γ . Then, (s, i, j) ∈ X if and only
if s |= η

i,j
f

Proof. (⇒) We prove this by induction on i and j. For the base case consider
i = 0. We now induct on j. When j = 0, (s, 0, 0) ∈ X iff L(s) = f , which means
that there is a path of length 0 starting from s where we encounter one state
labeled f . Now suppose j > 0. If L(s) = f then it trivially follows that there
is a path of length j > 0 starting from s where we encounter at least one state
labeled f . Suppose L(s) = f̃ . Then by Lemma 2, there is s′ and j′ < j such that

s → s′ and (s′, 0, j′) ∈ X . Then by induction hypothesis, s′ |= η
0,j′

f which then

implies that s |= η
0,j
f .

Consider i > 0. Once again we induct on j. Observe that since by Lemma 2,
(s, i, 0) is not in any fixpoint when i > 0, the claim holds vacuously. The induc-
tion step goes through in manner similar to the case of i = 0 and the proof is
therefore skipped.

(⇐) We prove the converse direction also by induction. Consider i = 0.
If j = 0 and s |= η

0,0
f then it must be the case that L(s) = f . This means

that (s, 0, 0) ∈ X . Suppose j > 0 and s |= η
0,j
f . If L(s) = f then once again

(s, 0, j) ∈ X . If L(s) = f̃ then it must be the case that there is some s′ such
that s → s′ and s′ |= η

0,j−1
f . Thus by induction hypothesis (s′, 0, j − 1) ∈ X and

therefore by Lemma 2, (s, 0, j) ∈ X .
Consider i > 0 and s |= η

i,j
f . If L(s) = f then it is definitely the case

that there is s′ such that s → s′ and s′ |= η
i−1,j−1
f . By induction hypothesis,

(s′, i − 1, j − 1) ∈ X , and that implies (by Lemma 2) that (s, i, j) ∈ X . On the
other hand, if L(s) = f̃ then we can conclude that there is s′ such that s → s′

and s′ |= η
i,j−1
f . By induction hypothesis this means that (s′, i, j − 1) ∈ X , and

by this we can conclude that (s, i, j) ∈ X because of Lemma 2.

We are now ready to characterize [[EGFf]] in terms of the fixpoint X of Γ .
This is the formal content of Proposition 4. But before presenting that proposi-
tion, we need a technical definition.

Definition 2. σ(X) = {s | ∀i∃j.(s, i, j) ∈ X}

Proposition 4. Suppose X is the fixpoint of Γ . Then s ∈ σ(X) if and only if
s |= EGFf

Proof. (⇐) Suppose s |= EGFf . Then there is a path π = s0, s1, s2, . . . starting
from s, such that for infinitely many k, L(sk) = f . Define ji to be the least

k such that L(sk) = f and there are i + 1 states before sk on π that are also
labeled f . It is clear that s |= η

i,ji

f and therefore by Proposition 3, (s, i, ji) ∈ X .
Hence s ∈ σ(X).

(⇒) Suppose s ∈ σ(X). By definition, for every i, there is some j such that
(s, i, j) ∈ X . Hence, by Proposition 3, s |= η

i,j
f . Construct a tree with root s,

containing edges appearing in all shortest paths that witness s satisfying η
i,j
f . A

few observations about this tree are in order. First, the tree is finite branching; an
immediate consequence of the Kripke structure being finite branching. Second,
all leaves are labeled f since the tree is constructed using the shortest witnesses.
Third, if s′ is an internal node in the tree then every path from s′ in the tree will
reach a state labeled f . Finally, this tree has infinitely many vertices. By König’s
Lemma, there must be an infinite path in the tree. Let us call this infinite path
π. We claim that this infinite path witnesses EGFf . Consider any state s′ on
path π. Since s′ is an internal node in the tree, it must be the case that on every
path from s′ in the tree we encounter a state labeled f . In particular on the path
π, we encounter a state labeled f beyond s′. Thus π has infinitely many states
labeled f .

3.2 Learning fixpoints

We are now ready to present our general framework for verifying ω-regular prop-
erties using learning. We make the following assumptions about the system K

being verified.

1. The system K can be simulated from any state.
2. There is a convenient symbolic representation R for sets consisting of triples

(s, i, j), where s is a state and i, j are natural numbers. This means that the
representation is closed under complementation and decision procedures are
available for membership in a set, containment of one set in another, and
emptiness of a set.

3. Given the representation of a set Y of triples (s, i, j) and a state s it is
possible to check if s ∈ σ(Y)

4. Given a representation of a set Y of triples (s, i, j) it is possible to compute
the representation of Γ (Y)

5. There is an active learning algorithm for concepts encoded in the symbolic
representation.

Based on these assumptions, we show how learning can be used to verify ω-
regular properties. The central idea is to use the learning algorithm to learn the
fixpoint X of Γ . After we learn the fixpoint, based on Propositions 1 and 4, we
can reliably answer whether or not the system satisfies the specification. Thus to
verify ω-regular properties using learning, we need to implement the membership
and equivalence oracles that the learning algorithm needs.

Proposition 3 suggests a method to answer membership queries about whether
(s, i, j) belongs to the fixpoint X of Γ . To check if (s, i, j) belongs to X , we will
simulate the system for j steps starting from state s and check if on some path,

we encounter i + 1 states labeled f . Further, given a representation for a set Y ,
we can also answer whether Y is in fact equal to X . Since Γ has a unique fix-
point, all we need to do is check if Γ (Y) = Y . If Γ (Y) 6= Y then the equivalence
query must provide a counterexample. In other words, we need to produce an
element in the symmetric difference of Y and X . This can be done as follows for
the different possible cases.

– Γ (Y)\Y 6= ∅. Let l = (s, i, j) be some element in this set. If l = (s, 0, 0) then
l ∈ X , because the only way we can have any (s, 0, 0) in Γ (Y) is if L(s) = f .
In this case, l is in X and hence in X ⊕ Y . If l = (s, 0, j) and L(s) = f then
once again l ∈ X and hence in X ⊕ Y . If l = (s, i, j) for some j 6= 0, we can
check if l ∈ X using the membership query. If yes, then l is also in X ⊕ Y

and we are done. Otherwise, l ∈ Γ (Y) because of the existence of some triple
(s′, i′, j′) ∈ Y which satisfies the conditions Γ2 or Γ3. (s′, i′, j′) cannot be in
X otherwise (s, i, j) would have to be in X . Hence (s′, i′, j′) ∈ X ⊕ Y .

– Γ (Y) (Y . From standard fixpoint theory, since X happens to also be the
least fixpoint under Γ , it must be the intersection of all prefixpoints of Γ (a
set Z is a prefixpoint if it shrinks under the functional Γ , i.e. Γ (Z) ⊆ Z).
Now, Y is clearly a prefixpoint. Applying Γ to both sides of the equation
Γ (Y) (Y and using monotonicity of Γ , we get Γ (Γ (Y)) (Γ (Y). Thus,
Γ (Y) is also a prefixpoint. Let l be some string in the set Y \ Γ (Y). Since l

is outside the intersection of two prefixpoints, it is not in the least fixpoint
X . Hence, l is in X ⊕ Y .

Once we have learned the fixpoint X , we can verify if the initial states of
the Kripke structure satisfy EGFf using Proposition 4. By Proposition 1, this
provides an answer to the verification problem. The overall procedure is summa-
rized in Figure 1. This procedure yields a complete verification method when the
fixpoint X of Γ can be symbolically represented in the chosen representation.
This is the content of the following theorem.

Theorem 1. If the fixpoint X of Γ can be represented using the chosen sym-
bolic data structure and a learning algorithm using membership and equivalence
queries is available for this data structure, the verification procedure is guaranteed
to terminate and correctly infer whether the system satisfies the specification.

The theorem follows from observations made in this section.

4 Infinite state systems using regular languages

In Section 3.2 we presented a general set of conditions under which we can use a
learning based approach to verify systems with respect to ω-regular properties.
In this section, we demonstrate this can be achieved within the context of using
regular languages to represent sets of states.

Regular sets are a popular symbolic representation for sets of states of for
infinite state systems. Regular model checking [4] has been applied to modeling

Is "y" a member?
yes/no

Is hypothesis "Y" the target?

Membership
oracle

LearnerIs "Y" a
fixpoint?

"Y" is not the target,
as shown by string "l"

no

yes

Equivalence oracle

Any initial
state in ?

no

System correct

yes

System incorrect

σ(Y)

Fig. 1. Verification procedure

parameterized systems, FIFO automata, systems with integer variables and push
down stacks. Based on the practical success that has been enjoyed by regular
model checking and the efficient learning algorithms available for regular lan-
guages, we apply our learning technique on regular sets. As mentioned before,
we use Angluin’s L∗ [2] algorithm.

We assume that the states of the system can be encoded as strings over some
finite alphabet ρk. The transition relation is given as a transducer τ k which takes
an input string corresponding to some state s and outputs a string for the state
related to s. The transition relation is assumed to be total. The set of initial
states is given by a regular set Sk

0 and the set of states with a label a is given
as regular sets Sk

a . Let K be the Kripke structure defined by the above sets.

4.1 Construction of the product Kripke structure

Let M be the Büchi automaton specifying the bad behaviors that must not
be exhibited by the system. Since ω-regular languages are powerful enough to
express fairness constraints, we assume that such constraints, if any, are already
embodied in the Büchi automaton. We now show how to construct the product
Kripke structure M×K. We extend the alphabet ρk to ρM×K with new symbols
bsm , one for each state sm in M . A state (sm, sk) in M×K is encoded as a string
with the first letter as bsm and the remaining part of the string as the original
string encoding sk. Initial states in SM×K

0 are given by concatenating a letter
bs0

for s0 ∈ Sm
0 and a string in Sk

0 . The set of states Sf̃ (resp. Sf) labelled with

f̃ (resp. f) is given by a DFA which looks at the first letter of the input string
and accepts if this is bsm for some sm 6∈ F m (resp. sm ∈ F m). The transducer
τM×K representing the transition relation for M × K is a bit more tedious but
can be constructed using standard automata operations.

Henceforth, we restrict our attention to the Kripke structure M × K. For
ease of notation, we drop the superscript M × K in τ , S0, ρ and so on.

4.2 Symbolic representation for the fixpoint X

As discussed in Section 3.2, we now need to learn the fixpoint X of the functional
Γ . In general, X is a subset of ρ∗×N×N. To encode X as a regular set we use the
alphabet ρX given by (ρ∪{⊥})×{0,⊥}×{0,⊥}. This is the alphabet that will
be used by Angluin’s L∗ learning algorithm. Here 0 is a unary symbol for natural
numbers and ⊥ is a new “filler” symbol. An element (s, i, j) is encoded as string
over ρX such that projecting the symbols on the first component gives us s (the
⊥ symbols are ignored); and projecting on the second and third components
gives i and j respectively in unary notation.

4.3 Membership and Equivalence queries

As discussed before, membership queries for X can be answered using Proposi-
tion 3. For answering equivalence queries, we need a symbolic way to calculate
Γ (X). Apart from the standard operations on regular set we define the following.

Definition 3. Given Y a set of strings in the alphabet of ρX , define

Inci(Y) = {(s, i, j) | (s, i − 1, j) ∈ Y }
Incj(Y) = {(s, i, j) | (s, i, j − 1) ∈ Y }

Given a DFA MY for Y , the DFA for Inci(Y) can be constructed as follows.
Inci(Y) keeps two copies of MY , with initial states in the first copy and final
states in the second copy. Any transition t with the ⊥ symbol for the i component
in the first copy is changed to a transition to the state corresponding to the target
of t in the second copy and the i component symbol is changed to 0. We also
add a transition from a state in the first copy which used to be final in MY

to the corresponding state in the second copy with symbol (⊥, 0,⊥). A similar
construction can be used for Incj(Y).

Checking hypothesis for upward closure in j. A property that we will find useful
in answering equivalence queries is that by definition of Γ , its fixpoint X is
upward closed in the j component, i.e., if (s, i, j) in X then for all j ′ > j,
(s, i, j′) is also in X . A set Y is upward closed in the j component if and only
if Incj(Y) ⊆ Y . If Y is not upward closed then let (s, i, j) be the string in
Incj(Y) \ Y . Clearly, (s, i, j) 6∈ Y . Now we use membership query to check if
(s, i, j) ∈ X . If (s, i, j) is indeed in X then (s, i, j) is in the symmetric difference
X ⊕ Y . Otherwise (s, i, j − 1) is also not in X (since X has the upward closed
property). In this case (s, i, j − 1) ∈ X ⊕ Y .

Symbolic computation of Γ1. A finite automaton for Γ1(Y) is obtained by taking
the DFA for f and taking its cross product with a DFA that accepts 0 for the i

component and another DFA which accepts any j.

Symbolic computation of Γ2. If we always first check for upward closure in j, we
can assume that we would need to compute Γ2 only for sets which are upward
closed. Let τ−1(Y) be the inverse of τ lifted to the triples (s, i, j) so that it
simply copies the second and the third components. It can be seen that if Y is
upward closed then Γ2(Y) = Sf̃ ∩ Incj(τ−1(Y)).

Symbolic computation of Γ3. For Γ3, τ−1(Y) gives the set of states which have
a successor in Y . It is easy to see that Γ3(Y) = Sf ∩ Inci(Incj(τ−1(Y))).

Using the fixpoint check. From the previous paragraphs, we have a symbolic
method to compute Γ (Y) = Γ1(Y)∪Γ2(Y)∪Γ3(Y). Now, the equivalence oracle
simply needs to check if Y = Γ (Y). We also need a method of extracting strings
in the symmetric difference of Y and the fixpoint in case Y is not the fixpoint. It
can be seen that the approach outlined in Section 3.2 can be applied to regular
sets.

4.4 Checking for s0 ∈ σ(X).

Proposition 5. σ(X) = Proj 1(Proj 1,2(X)). Here, Proj 1 is the projection to the
first component and Proj 1,2 the projection to the first and second components.

Proof (Sketch). Recall that σ(X) = {s | ∀i∃j.(s, i, j) ∈ X}. Equivalently, σ(X) =
{s | ¬(∃i¬(∃j.(s, i, j) ∈ X))}. The claim follows from the fact that ∃ can be
eliminated using projection and the ¬ operator corresponds to taking the com-
plement.

Given a regular representation of X we can calculate σ(X) using standard regular
set operations. Then the system is correct if and only if S0 ∩ σ(X) = ∅.

The verification algorithm is summarized in Figure 2.

4.5 Complexity analysis

Let m be the length of the longest string returned by the teacher in a negative
answer to an equivalence query, n be the number of states of the minimal au-
tomaton representing the fixpoint X , k be the size of the alphabet of the learned
language and t be the number of states of the automaton representing the trans-
ducer for the transition relation. As shown in [2], Angluin’s algorithm makes
O(kmn2) membership queries and O(n) equivalence queries. The worst case for
the equivalence query for a hypothesis Y occurs when we look for a string in
the difference of Y and Γ (Y). The size of DFA representing Y is bounded by
n. Looking at Γ , it can be seen that the DFA representing the difference of Y

and Γ (Y) would be O(nt). Thus the length of the longest string returned by an
equivalence query is m = O(nt).

The cost of answering membership queries dominates the total runtime cost of
the algorithm. Using m = O(nt), the number of membership queries is O(ktn3).
For efficiency, given a query for (s, i, j), we build a DFA Dj for Γ j+1(∅) where

algorithm learner

begin
Angluin’s L∗ algorithm
end

algorithm isMember

Input: (s, i, j)
Output: is (s, i, j) ∈ X?
begin

From s simulate system for j steps
Does any path in above encounter
at least i + 1 states labelled f?

If yes return true
else return false

end

algorithm Equivalence Check

Input: Hypothesis Y

Output: For fixpoint X, is Y = X?
If not, then some string in Y ⊕ X

begin
If Incj(Y) \ Y 6= ∅ {upward closure check}

let (s, i, j) ∈ Incj(Y) \ Y

if isMember((s, i, j))
return (no, (s, i, j))

else
return (no, (s, i, j − 1))

else if Γ (Y) \ Y 6= ∅ {fixpoint check}
let (s, i, j) ∈ Γ (Y) \ Y

Find (s′, i′, j′) which causes (s, i, j) to be in Γ (Y)
if isMember((s, i, j))

return (no, (s, i, j))
else

return (no, (s′, i′, j′)
else if Γ (Y) (Y

return (no, l ∈ (Y \ Γ (Y)))
else {found fixpoint}

if S0 ∩ Proj
1
(Proj

1,2(X)) 6= ∅
print “System incorrect”

else
print “System correct”

end

Fig. 2. Verifying ω-regular properties for regular set based systems

Γ j+1 denotes the composition of Γ j + 1 times with itself. Once Dj has been
built, all queries with the same value of j can be answered by checking if the
queried element is accepted by Dj . Thus the cost of the membership queries is
equal to the number of membership queries and the cost of building the DFAs.
The cost for Dj is (O(t))j which leads to the total cost of membership queries
of O(tO(nt) + ktn3) (using maximum value of j to be m = O(nt)).

5 Examples

We have extended our learning based verification tool suite called Lever [11]
with the algorithm presented in this paper and have successfully analyzed live-
ness properties for two examples of infinite state systems. The Büchi automaton
forms the specification and also describes the fairness constraints on the system.
The states of the system considered are encoded as strings over an alphabet as
described in [4]. We now briefly discuss the examples analyzed.

Token passing We consider a parameterized system of processes in which each
process can send a token to the process to its right. There is a single token
in the system and initially it rests with the leftmost process. The liveness
property that is encoded with the Büchi automaton is, “every process even-
tually receives a token”. The fixpoint for Γ is found to be regular and the
system shown to be correct using our verification procedure.

Producer consumer This consists of a FIFO automata with a single channel,
in which one part of the system constantly produces messages while another
part consumes them. We verify the property, “a message produced by the
producer is eventually consumed”. Again, the fixpoint for Γ is found to be
regular and the system verified to be correct.

Both the examples take just a few seconds to analyze on a 1.5 GHz computer.
We continue to optimize the implementation in Lever, and in future plan on
analyzing more examples of infinite state systems and comparing our running
time with other tools that are available.

6 Conclusion

In this paper we presented a general learning based verification framework to
verify ω-regular properties of infinite state systems. We instantiated the frame-
work in the context of regular model checking giving detailed algorithms for the
various primitive operations that are needed in order to perform the learning
based verification procedure. The algorithm is a significant improvement in the
current state of the art in learning based verification, as it verifies general ω-
regular properties, while not making restrictive assumptions about the way the
transition relation of the system is represented as a transducer. Furthermore, the
algorithm can detect buggy implementations, even when the implementations do
not have an ultimately periodic counter-example for the property.

References

1. P. A. Abdulla, B. Jonsson, M. Nilson, J. d’Orso, and M. Saksena. Regular model
checking for LTL(MSO). In Proc. of CAV’04, USA, LNCS 3114, 2004.

2. D. Angluin. Learning regular sets from queries and counterexamples. Inform.
Comput., 75(2):87–106, Nov. 1987.

3. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In
CAV’04, LNCS 3114, 2004.

4. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
E. A. Emerson and A. P. Sistla, editors, Proceedings of the 12th International Con-
ference on Computer-Aided Verification (CAV’00), volume 1855 of LNCS, pages
403–418. Springer, 2000.

5. A. Bouajjani, A. Legay, and P. Wolper. Handling liveness properties in (ω-)regular
model-checking. In Proc. of Infinity’04, London, UK, 2004.

6. E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propo-
sitional mucalculus. In Proccedings of the First Annual Symposium on Logic in
Computer Science, pages 267–278, Washington, D.C., 1986. IEEE Computer Soci-
ety Press.

7. E. A. Emerson. Temporal and modal logic. In J. V. Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 995–1072. Elsevier, Amsterdam,
1990.

8. L. Fribourg and H. Olsén. Reachability sets of parametrized rings as regular lan-
guages. In Proc. 2nd Int. Workshop on Verification of Infinite State Systems (IN-
FINITY’97), Bologna, Italy, July 1997, volume 9. Elsevier Science, 1997.

9. P. Habermehl and T. Vojnar. Regular model checking using inference of regular
languages. In Proc. of Infinity’04, London, UK, 2004.

10. B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying
infinite-state systems. In 6th International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS’00), volume 1785 of LNCS, pages
220–234. Springer, 2000.

11. LEVER. Learning to verify tool. http://osl.cs.uiuc.edu/˜vardhan/lever.html, 2004.
12. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. In

Pattern Recognition and Image Analysis, volume 1 of Series in Machine Perception
and Artificial Intelligence, pages 49–61. World Scientific, Singapore, 1992.

13. A. Pnueli and E. Shahar. Liveness and acceleration in parameterized verification.
In CAV’00, 2000.

14. W. Thomas. Automata on infinite objects. In J. V. Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 133–191. Elsevier, Amsterdam,
1990.

15. T. Touili. Regular model checking using widening techniques. In ENTCS, vol-
ume 50. Elsevier, 2001.

16. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Actively learning to verify
safety for fifo automata. In LNCS 3328, Proc. of FSTTCS’04, Chennai, India,
pages 494–505, 2004.

17. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Learning to verify safety
properties. In LNCS 3308, Proc. of ICFEM’04, Seattle, USA, pages 274–288,
2004.

