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Abstract

Advances in networking, communication, storage, computing, and multimedia technologies

coupled with many emerging application areas is fueling the merger of computing and communi-

cation systems. This will result in a global information infrastructure of the size and magnitude

erstwhile unimaginable. Such an infrastructure will have numerous services and hundreds of

thousands of subscribers. A key issue in developing a global information infrastructure is that

of effective management and utilization of resources. Increasingly, applications require deliv-

ery of multifaceted digital information services with stringent requirements on the delivery of

information. For instance, multimedia applications have QoS (Quality of Service) parameters

that define the extent to which performance specifications such as responsiveness, reliability,

availability, security and cost-effectiveness may be violated. Varying requirements posed by

applications, customers, and service providers makes the task of resource management in the

evolving global information infrastructure a challenging research problem - one with significant

commercial impact as well.

In this thesis, we present a new paradigm for developing safe, customizable middleware

for the global information infrastructure. The composition of multiple resource management

services is necessary to guarantee safe, cost-effective QoS in such an infrastructure, which by

its very nature is open and distributed. We specify core resource management services – re-

mote creation, distributed snapshot and directory services that can be used as a basis for more

complex activities. The thesis develops mathematical frameworks and formal mechanisms for

reasoning about the interaction and composition of resource management activities in open

distributed systems, their dynamic installation and modification. In particular, we develop a

two-level meta-architectural model of distributed computation based on Actors. This enables

us to consider separately issues such as: functional behavior of an application; and resource

management issues such as storage management, load balancing, QoS specification and enforce-

ment. The utility of this approach is illustrated by developing QoS based resource management

techniques for distributed multimedia systems and reasoning about them.
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Chapter 1

Motivation

In the coming years, multimedia to the desktop and home is likely to become a pervasive tech-

nology. Distributed multimedia(MM) applications are likely to become ubiquitous and influence

the way computer systems are used and developed. In recent years, advances in networking,

internetworking, storage and hardware technologies are making it possible for intensive applica-

tions like real-time interactive multimedia to the home and desktop a reality. With the advent

of global applications like the Web and interactive community services, distributed information

access is having an impact on the masses. Interconnectivity and distribution of services and

information is becoming widespread. For example, future clinical environments and medical in-

formation systems will require the storage, retrieval, navigation and presentation of multifaceted

information with stringent requirements on the reliability and accuracy of data. The concept

of multimedia is also becoming essential in future educational and entertainment systems, as

evidenced by the development of digital studios and instructional video-on-demand technol-

ogy. Multimedia objects in the above systems are stored in high capacity storage devices and

deliver interactive, digital MM services over emerging residential and enterprise broadband net-

works. These networks support hundreds of thousands of subscribers – leading to the merging

of computing and communication systems.

This new generation of systems is required to service requests with widely varying char-

acteristics - from broadcast/multicast services to on-demand/interactive services; from static,
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non-continuous media like text and images to more dynamic continuous media types like video.

Multimedia applications are often time-constrained – perceptual semantics of the information

is dependent on the timeliness of arrival.These requirements are stated as end-to-end Qual-

ity of Service (QoS) specifications and imply real-time information extraction, delivery and

presentation.

Since these systems are commercially deployed, performance and cost-effectiveness play an

important role in system design. For instance, one of the major design considerations for a large-

scale system is scalability from both application and system perspectives - i.e. the ability to

admit and service thousands of user requests simultaneously and the ability to add and remove

nodes from the system dynamically. With enhancing demands for better cost-performance,

scalability, and availability, merely pumping additional hardware will be of little use without

effective management of the system resources. New algorithms, protocols and architectures for

the end-to-end management of system resources like data, computation and communication in

distributed multimedia systems must be developed.

A wide range of protocols and activities must be composed to implement end-to-end dis-

tributed application management. These protocols and activities must execute concurrently,

non-disruptively and share the same resources. In order to avoid resource conflicts, deadlocks,

inconsistencies and incorrect execution semantics, the underlying resource management system

must ensure that the simultaneous system activities compose in a correct manner. The diffi-

culty in reasoning about system level interactions is due to the complexity of characterizing

the semantics of shared resources and specifying what correctness of the overall system means.

In addition, the presence of user-specified QoS criteria that may need to be satisfied further

complicates the allocation and management of resources.

In this thesis, we propose some resource management techniques that can be employed to

guarantee cost-effective QoS in distributed multimedia environments. We address the issues

of correctness and performance in the design of these systems. This thesis is divided into 3

sections: (1) Core services for distributed resource management (2) Composition of distributed
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resource management activities and formal correctness reasoning (3) Providing QoS guarantees

in distributed multimedia systems through composite resource management.

1.1 Core Services for Distributed Resource Management

Systems that exhibit a high degree of dynamicity and autonomy can be characterized as open

distributed systems (ODS). ODS evolve dynamically and components of ODS interact with

an environment that is not under their control. Very often, these systems are federated with

multiple control domains. Adaptive resource management strategies must allow for dynamic

adaptation of applications to new service parameters as resource availability varies and grace-

fully degrade the quality of service in the event of a failure.

The abstractions most natural for representing ODSs are inherent in the framework of

distributed objects or actors. The actor model of computation has a built-in notion of encapsu-

lation and interaction and can be viewed as a model of coordination between autonomous inter-

acting components. In order to comprehend the interactions between system and application

activities and between system level activities themselves, we distinguish between application

activities and system activities. and reason that correctness criteria are met. In addition, we

can use the basic policies to satisfy QoS criteria like dependability and predictability and reason

that correctness criteria of system level activities like task scheduling and event management

are met in the presence of these constraints.

While designing distributed resource management algorithms, correctness and consistency of

the underlying system and executing applications must be ensured. To manage the complexity

of reasoning about components of ODS, our strategy is to identify key basic services provided by

the system where non-trivial interactions occur. We refer to these key services as core services.

The runtime activities and primitives based on these core services can be used as a foundation

for the implementation of other resource management activities and protocols. In this thesis,

we describe and formulate core resource management mechanisms that can be used for the

management of objects in a widely distributed system.
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The core services we discuss in this thesis are remote creation, distributed snapshots and

name services. Remote creation can be used as the basis for designing algorithms for activities

such as migration, replication and load balancing. Distributed snapshots are used as the basis

for global activities like distributed garbage collection, checkpointing and recovery. Part of the

difficulty with automatic garbage collection in systems of active objects, such as actors, is that

an active object may not be garbage if it has references to other reachable objects, even when no

other object has references to it. This is because an actor may at some point communicate its

mail address to a reachable object thereby making itself reachable. Because messages may be

pending in the network, the asynchrony of distributed networks makes it difficult to determine

the current topology. Using the core distributed snaphot service, we describe a generation

based distributed garbage collection algorithm which does not require ongoing computation to

be halted during garbage collection. This makes it possible for the system to provide real-

time response to service requests. Similarly, we illustrate Similarly, a naming service can be

used to design access control mechanisms, routing policies and group based communication.

Resources in a distributed system can be partitioned into local and global resources. Many

activities like memory management, scheduling etc. have both local and global counterparts.

The partitioning of resource management responsibilities between these components is critical;

local optimization of resources does not necessarily imply that the global system is efficient.

1.2 Composing Resource Management Activities

In order to be able to provide customizable and adaptable execution of concurrent services, ODS

must provide support for the correct composition of these dynamic system services. Reasoning

about the composition of distributed algorithms involves reasoning about the correctness (safety

and liveness) of each algorithm and reasoning about the compositionality (non-interference) of

multiple algorithms. We establish a framework for specifying concepts and stating require-

ments in an ODS. By defining a formal semantics for resource management, we establish a

basis for specifying and reasoning about properties of and interactions between components of
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such systems. The model we propose is the basis for developing a semantic framework that

supports dynamic customizability and separation of concerns in designing and reasoning about

components of open distributed systems.

In our view, a system is composed of two distinct kinds of objects or actors - application-

level and system-level objects distributed over a network of processing nodes. Application-level

objects carry out application level computation, while system objects are part of the runtime

system that manages system resources and controls the runtime behavior of the application level.

Conflicts and interference can arise between application-level objects, between application and

system levels and between the system level objects themselves. Thus, standard safety and

liveness properties are not adequate to specify components of ODS. Non-interference properties

must also be specified and checked. Making non-interference properties explicit is a means of

making specifications modular and composable.

We express the core services defined in the previous section in this two level model and

specify more complex services in terms of purely system-level interactions, which are better

understood, although still non-trivial. We prove properties of non-interference and composition

of resource management activities in this framework. We also develop a formal foundation for

dynamic installation of resource management activities and protocols in an executing system.

This, we believe is a step towards development of a powerful tool for designing practical and

robust operating environments for open distributed systems.

1.3 Distributed Multimedia Systems - An Application

In this part of the thesis, we use the developed theoretical framework to specify and manage

the requirements of multimedia systems. Advances in technology are facilitating the spread of

widely distributed multimedia services. These high-performance systems are being deployed

over wide-area networks to deliver a variety of interactive, digital multimedia services to resi-

dential subscribers [?] and enterprise systems. Distributed multimedia architectures meet the

scalability and geographic distribution requirements in such large deployments [?].
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Figure 1.1: Layered Architectures for Distributed Multimedia Systems - The need for end-to-

end Quality of Service.

Although service requirements for many applications are stringent, most MM applications

can tolerate minor, infrequent violations of their performance requirements. This degree of

freedom is specified as a quality-of-service (QoS) parameter, for e.g., quality of delivered image,

tolerable jitter in a video frame, and must be enforced by the DMM system. There are two main

phases associated with providing predictable quality of service to every incoming request - static

and dynamic. The more static aspects of QoS management are handled by negotiation, resource

reservation and admission control protocols executed when a service is initially established.

QoS enforcement deals with the runtime monitoring, control and adaptation of services and

resources to ensure that the desired QoS levels are sustained. For guaranteed QoS, this process

must be applied to all components on the transmission and computational path - storage system,

transmitting host, gateways and networks to the destination endpoint. The layered architecture

in Figure 1.1 depicts the distribution of QoS components in the system.

DMM systems employ a wide range of protocols - communication, transport, media-encoding,

negotiation, resource reservation protocols that must be composed for end-to-end transfer. The

simultaneous execution of multiple management policies at different points in the stream require
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system designers to guarantee correct and safe compositions of protocols and system activities.

The cost-effective realization of layered protocols implies efficient resource utilization while

composing protocols.

In this section of the dissertion, we discuss facilities required for dynamic adaptation of

global multimedia applications to varying service parameters and system conditions. In our

approach, we visualize MM applications as a collection of autonomous, concurrent information

processing entities called media-actors. We study linguistic constructs for the synchronization

of multiple media-actors and propose a meta-architectural framework for QoS-based resource

management of media-actors. We address two important issues:

• Specifying Quality-of-Service (QoS): Global networks we know today such as the

Internet, are best-effort traffic systems with data services that provide access to mainly

non-continuous media. However, multimedia applications are characterized by the pres-

ence of QoS requirements for video quality, tolerable jitter, delays etc. Modular specifi-

cation of QoS requirements helps in reasoning about system interactions in the presence

of QoS constraints. This in turn, helps us deal with the complexity of widely distributed

MM services.

• Cost-effective resource management: Better performance and availability require

additional system resources, e.g.,processing power, network and storage resources. Cost-

effective utilization of system resources is also needed to accommodate the rise in the

number of service requests. Customizable system architectures help in managing the

end-to-end performance while guaranteeing desired QoS to the application. This in turn

requires the development of new algorithms, protocols and architectures for the manage-

ment of data, computation and communication.

1.4 Thesis Organization

The remainder of this document is organized as follows. Chapter 2 sketches examples of core

resource management services and develops algorithms for management of actors. We specify
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core resource management services – remote creation, distributed snapshot and naming services

that can be used as a basis for more complex activities. We illustrate how these core services may

be used in implementing more complex activities within the actor framework, e,g, migration and

distributed garbage collection. Similarly, we illustrate how migration and replication services

can be defined using the core remote creation service.

In Chapter 3, we present a two-level model of distributed computation based on actors. that

provides for the separation of application and system requirements. We describe the TLAM

(the Two Level Actor Model), the formal model for specifying and reasoning about distributed

RM activities, its components and semantics.

In Chapter 4, we sketch examples of specifications and compositions of services: remote

creation, migration, and reachability snapshots and indicate how the specifications might be

used to build running systems. We discuss the specification of core services in the two-level

metaarchitecture - remote creation and reachability snapshot at different levels of abstraction

and formally show how an implementation of these services satisfies the required service speci-

fications. We also reason about how these services can be safely composed to execute simulta-

neously by defining the interactions between base and meta-actors and meta-actors themselves.

We discuss invariants that must be satisfied in order for the migration and reachability snapshot

services to co-exist.

In Chapter we explore some of the policies, mechanisms and compositions required to spec-

ify and manage distributed multimedia systems. We address the following issues: (1) Deciding

what constitutes quality of service metrics - balance between user-satisfaction and effective

resource management. (2) Specification of QoS in the actor model (3) Defining a multime-

dia management architecture using the two level meta-architectural approach and performance

evaluation. We investigate metric parameters for video QoS based on conflicting requirements

from two perspectives: the user who desires improved quality and the service provider who de-

sires effective system utilization. Based on results from empirical studies, we define parameters

of resource consumption (storage and network bandwidth etc.) and user satisfaction (jitter, syn-

chronization skew) and derive analytical interrelationships among the metric parameters. We
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also describe challenges in the modeling and specification of timing related multimedia (MM)

services in open distributed systems. We propose a specification of timing related Quality-

of-Service (QoS) attributes in an actor-based distributed system using a real-time variant of

actors known as RtSynchronizers and describe some techniques for informally reasoning about

quantitative QoS properties.

In Chapter 6,we describe a two-level multimedia management architecture for composite

resource management in distributed MM servers. We formulate various policies for load man-

agement in distributed video servers using a two-level architecture - (a) replication, placement

and migration of video objects using the core remote creation service, and (b) dereplication of

video objects using annotations obtained by a snapshot of the current executing state of the

system. For scheduling requests, we propose an adaptive scheduling policy that compares the

relative utilization of resources in a video server to determine an assignment of requests to repli-

cas. We also propose a predictive placement policy that determines the degree of replication

necessary for popular objects using a cost-based optimization procedure based on a priori predic-

tions of expected subscriber requests. To optimize storage utilization, we also devise methods

for dereplication of video objects based on changes in their popularities and in server usage

patterns. We simulate an object-based multimedia VOD system that consists of application

video objects servicing video streams from multiple servers and a metalevel load-management

system that manipulates application execution to improve performance. We show how applica-

tion objects can be managed effectively by composing multiple resource management activities

managed at the metalevel. Performance evaluations indicate that a load management proce-

dure which uses a judicious combination of the different policies performs best for most server

configurations.

In Chapter 7, we conclude with a summary of the dissertation and future research directions.

9



Chapter 2

Core Services for Distributed

Resource Management

There are some features that distinguish a distributed, decentralized system from a centralized

system. They include:

• Lack of knowledge of global state

• Lack of a global timeframe

• Nondeterminism

Distributed algorithms have been proposed to provide various distributed system services: rout-

ing, deadlock-free packet switching, global traversal, election, termination detection,global snap-

shots and fault tolerance. In order to understand the implications of concurrency in these system

services, we must first be able to specify and understand interactions involved in each service.

We can then talk about composing multiple system services and reason about overall system

state. In this chapter we describe three core services – remote creation; directory services and

identity; and snapshot services on which multiple algorithms can be based.
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2.1 A Model of Concurrency - Actors

Distributed systems of the future must handle applications that are open and interactive, where

problems that need to be solved can dynamically change. Hence such systems must be reactive,

open to change and be able to deal with inputs that vary in volume and kind. The system must

evolve dynamically based on inputs from an outside world and exploit concurrency efficiently

under different circumstances. To realize the potential and limitations of distributed systems

and services, we need an effective abstract model to reason about them. An abstract model

facilitates the development of various applications without any concern for the underlying archi-

tectural configuration. It is also possible to insulate hardware and software developments, and

derive the benefits of advances in one without having to be overly concerned about equivalent

advances in the other.

One can view a distributed computation model as a set of abstractions that capture the

semantics and functionality of concurrent program execution. Many models of concurrency and

distributed computing have been proposed [?, ?, ?, ?, ?].

With MM transmission, there is a rising demand for an infrastructure that supports a wide

range of services and applications. With global multimedia applications, the main challenge is

that of openness and performance in a distributed environment. Systems exhibit continuous

evolution and change in topology with dynamically varying request patterns, information, users

and services. Dynamic introduction of real-time services and communication is critical to

manage this complexity. What is required is a model that allows distributed applications to

be developed, implemented and enhanced while maintaining the desired level of service quality.

We characterize such systems as open distributed systems (ODS). The Actor model or Actors,

first proposed by Carl Hewitt [?] and later developed by Agha [?], captures the essence of

concurrent computation in open distributed systems at an abstract level.

11



2.1.1 About Actors

Open Distributed Systems (ODS) evolve dynamically and components of ODS interact with an

environment that is not under their control. The Actor model of computation has a built-in

notion of encapsulation and interaction, and thus it is a natural model to use as a basis for a

theory of ODS.

In the actor paradigm, the universe contains computational agents called actors, which are

distributed in time and space. Traditional passive objects encapsulate state and a set of proce-

dures that manipulate the state; actors extend this by encapsulating a thread of control as well.

Each actor potentially executes in parallel with other actors and may send messages to actors

it knows the addresses of. The Actor model of computation has the following characteristics:

• Each actor has a conceptual location (its mail address) and a behavior as illustrated

in Figure 2.1. Actor addresses may be communicated in messages, allowing dynamic

interconnection governed by locality laws.

• The communication topology of an actor system is called the acquaintance relation. An

actor can only send messages to its acquaintances. The acquaintances of an actor are

among those it is given at creation time, those it has created and those sent to it in a

message. The acquaintances that an actor can be given at creation time are among the

acquaintances of its creator. An actor can also forget acquaintances. Thus the topology

can change dynamically.

• Finally, new actors may be created; such actors have their own unique addresses. On

receiving a communication, an actor processes the message and as a result may cause one

or more of the following events:

1. Creation of a new actor,

2. Change of behavior, and

3. Sending of a message to an existing actor.
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Figure 2.1: The Actor Model: Components and Interfaces - Actors encapsulate a thread and

state. The interface is comprised of public methods which operate on the state.

In general, Actors can be viewed as a model of coordination between autonomous interacting

components. The local computation carried out by the components may be specified in any

sequential language.

Axioms expressing the essential features of actor computation such as the acquaintance

relation and ordering of events are given in [?]. Will Clinger [?] developed a powerdomain

semantics of actor systems, showing the consistency of these axioms. An interleaving transition

system semantics for an actor language is given in [?, ?]. This work builds on the formulation

in [?] and develops methods for reasoning about equivalence of actor programs [?, ?] and the

composition of activities in actor systems [?]. (See [?, ?, ?] for more discussion of the Actor

model, and for many examples of programming with actors.)

Note that the Actor model is, like the theory of higher order nets or the π-calculus, general

and inherently parallel. A key difference between actors and objects defined using ports in the

π-calculus is that actor names (addresses) are uniquely tied to the identity of an actor – giving

out an actor name does not enable the recipient to receive messages directed to that actor.

Moreover, asynchronous communication in actors directly preserves the available potential for

parallel activity: an actor sending a message does not have to necessarily block until the re-
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cipient is ready to receive (or process) a message. Of course, it is possible to define actor-like

buffered, asynchronous communication in terms of synchronous communication, provided dy-

namic actor (or process) creation is allowed. On the other hand, more complex communication

patterns, such as remote procedure calls, can also be expressed as a series of asynchronous

messages [?]. Note also that Actors can be used to express different forms of concurrency and

parallelism. Data parallelism is expressed as a broadcast message sent to multiple actors. Func-

tional parallelism is expressed by concurrent messages to multiple actors whose responses can

be synchronized later via join continuations [?].

2.1.2 Evaluation of the Actor Model

Portability of Actor Programs

A concrete way to think of actors is that they represent an abstraction over concurrent architec-

tures. Actor primitive operations provide a simple and powerful base on which to build higher

level features and abstractions for concurrent programming. These include programming ab-

stractions for specifications of key concepts such as communication, synchronization, scheduling

and placement [?]. An actor runtime system provides the interface to services such as global

addressing, memory management, fair scheduling, and communication. It turns out that these

services can be efficiently implemented, thus raising the level of abstraction while reducing the

size and complexity of code on concurrent architectures [?]. Application portability is achieved

via a well-defined interface exported to the compiler – this makes the application architecture

independent. Architecture dependent modules are separated; hence porting the runtime system

across multiple platforms is fairly straightforward. Actor languages can be implemented on a

number of computer architectures such as sequential processors, shared memory processors and

SIMD architectures. However, multicomputers are particularly interesting because of their scal-

ability characteristics. Actor languages have proven especially useful as a language model for

computation on multicomputers [?] because the implementation of actors on message-passing

architectures is straight-forward. The network in multicomputers supports the actor mail ab-
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straction; memory is distributed and information is localized on each computer. Load balancing

and managing communication patterns are simplified by other characteristics of actor systems

such as the use of small objects which can be created and destroyed dynamically. It should

be observed that actors can be directly supported on multicomputers whereas implementing

other paradigms on such computers may require their implementation in terms of some simple

variant of the actor execution model [?].

Scalability and Openness

The Actor model promotes scalable computing via the use of suitable programming abstractions.

Group abstractions allow us to simplify computation and enhance performance in applications

where there is uniformity of behavior among a group of actors. Hence, data parallelism avail-

able in an algorithm can be expressed concisely and naturally. ActorSpaces is an extension

of the actor paradigm with Linda-like primitives for group based communication. The Ac-

torSpace model allows the abstract specification of a group of actors with specific attributes.

The sender of a message specifies a destination pattern which is pattern matched against the

attributes of the actors in the actorspace. Concurrent Aggregates (CA) is an extension of

the Actor model which defines multi-access aggregates that allow several messages to arrive

simultaneously, removing the need for serialization of messages. Concert is a system based on

CA [?], that facilitates the expression of irregular parallel programs and the construction of

large applications. Metaarchitectural frameworks using the Actor model [?] provide dynamic

customizability in designing and reasoning about components and protocols in open concurrent

systems.

Performance Issues

Effective implementations of distributed systems involves tradeoffs in expressiveness, complex-

ity and efficiency. With distributed programs, one cannot separate algorithm and program

design from architectural details. For instance, the partitioning and distribution of data can

dictate which of the potentially parallel operations may be executed sequentially. Hence, we
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cannot determine actual performance and cost metrics of a distributed algorithm independent

of architecture and other system policies. The Actor model provides scalability and portability.

However, since Actors is largely a programming model, and the representation of architectural

issues is abstracted, it is hard to directly model performance parameters using actor specifi-

cations alone. Since actors may vary in granularity and the cost of communication may vary

significantly, it is impossible to determine the cost of computation of many actor programs in

any abstract way.

Moreover, because the Actor model is highly distributed, compilers must serialize execu-

tion to achieve execution efficiency on conventional processors. The efficiency of a distributed

algorithm implemented via actors is dependent both on problem decomposition into actors, as

well as the placement of actors in a specific architecture. One of the most effective compiler

transformations is to eliminate creation of some types of actors and to change messages sent to

actors on the same processor into function calls.

Actors can also be used to provide efficient portability by using the variable grain size fea-

ture. The programmer can optimize the size of the sequential process within an actor to match

the optimal grain size of processes on a given parallel architecture based on costs associated

with process creation, context switching and communication. Hence, we can obtain efficient

implementations by code transformations of actor programs to actors of suitable granularity,

e.g. by creating fatter actors that throttle concurrency.

Overall suitability of Actors

The specification, modeling and efficient programming of distributed applications is key to

expanding the influence of distributed computation. Actors can provide a suitable execution

environment for distributed programs. Specifically, in order to determine the balance between

efficiency and flexibility, we need to utilize compilation techniques that help minimize perfor-

mance penalties due to abstraction. Problems exist in developing programming paradigms with

abilities to describe varied interaction patterns. For example, the information provided by a

transitional model of actor systems is too detailed to be used for reasoning about complex
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system structures. Ensuring consistency and correctness without inhibiting concurrency is a

difficult challenge. Thus, there is a need to develop a language for building abstractions which

includes a methodology for combining modules. This requires the development of a calculus of

components and configurations. Specifically, it should be possible to directly model and reason

about abstractions rather than analyzing the actor implementations of those abstractions. This

is an important topic of ongoing research.

2.2 Core Services for Open Distributed Systems

Open distributed systems should provide strong support for customization and adaptation.

Traditional reflective systems aim at providing a customizable and adaptable execution of con-

current systems [?, ?, ?]. However, these systems are very difficult and complex to reason

about. Non-reflective systems which support customization do so only on a static basis. In

an object-oriented system such as Choices [?], or Spring [?], frameworks may be customized

for a particular application. However, once customized, the characteristics may not change

dynamically.

What we require is an architecture that allows runtime aspects of an application and inter-

action protocols to be programmed and tuned independently of the basic application behavior.

This independence allows a wide variety of protocols and aspects of execution behavior to be

composed from a small number of basic modules. An example of this modular composition is

the layered or onion-skin approach for combining dependability protocols [?]. Another essential

characteristic of an open system is the ability to install system and runtime services on the fly.

This gives us the ability to add new features to an operating system without halting the system

or rebooting – an essential characteristic of open systems.

Distributed systems in practice employ a large number of ad-hoc mechanisms and policies to

provide performance and reliability. Services such as load balancing, replication and migration

involve the recreation of a service or data object at a remote site. Services such as distributed

garbage collection, debugging, synchronization, checkpointing, global traversal, termination
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detection and consistency protocols require the recording or capture of information on multiple

nodes and links, i.e., information obtained by a snapshot of some aspect of the node or link.

Services like access control, deadlock-free routing, group-based communication, distributed data

structures, etc. require interaction with a global repository or nametable. In this chapter, we

consider three core services that represent this classification: remote creation; directory services

and identity; and snapshot services. We define core services as those basic system services where

complex interactions between the system and application can occur. These core services form

the building blocks for other classes of algorithms that rely on the core services for complex

system interactions. Our goal is to be able to reason about the interactions between the layered

services in terms of interactions among the core services. We use the commonly observed

patterns in distributed algorithms to identify three basic activities:

• Recreation of services/data at a remote site

• Capturing information at multiple nodes/sites

• Interactions with a global repository.

Correspondingly, we define three core services - remote creation, distributed snapshot and

directory services. The organization of the core services and their use in distributed resource

management activities is illustrated in Figure 2.2.

Another aspect of this work is to develop systematic means of describing and ensuring con-

straints on interactions among system-level activities. Typically, while reasoning about resource

management activities, we tend to assume independence of resource management activities from

each other. But, in a real system resource management activities are not necessarily indepen-

dent. In addition, interleaving the application-level and system-level execution may give rise

to inconsistencies if improperly done. For example, complications may arise in a system that

facilitates migration if global snapshots can be taken concurrently. In the case of distributed

GC, migration of actors would interfere with the recording of a consistent GC acquaintance

relationship. By implementing the interaction interface at a very basic level, i.e. in the core
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Figure 2.2: Classification of Core Services

services we can reason about and detect safe points in a dynamic system where system activities

can be performed.

Two simple forms of combinations of the core service specifications are:

• Using the core services: In this chapter, we demonstrate how system level activities in

a distributed system like migration, replication, security, distributed garbage collection

etc.can be implemented using these core services as a foundation.

• Co-existence of multiple resource management services: By forcing layered services to

obey certain restrictions specified as constraints or invariants, we achieve safe co-existence

of multiple policies. To illustrate combination by co-existence we identify conditions to

permit Migration and Reachability Snapshot services to co-exist (act concurrently) in a

system without interfering with one another.

2.3 The Remote Creation Core Service

Remote creation is the process by which actor creation occurs on a specified node other than

the node from which creation is being initiated. Remote creation is a basic facility that can

be used in other resource management activities like load-balancing, replication and migration.
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Figure 2.3: A Remote Creation Request.

By encapsulating the interactions between the application and system level actors within the

remote creation service, we can state requirements that ensure safe and correct composition

of other resource management activities with remote creation. Consequently, services using

the remote creation facility are ensured of correct interactions without interference from other

system activities.

A remote creation request has 2 components – ad a description of the fragment to be

migrated and a node, N (See Figure 2.3). This is interpreted as a request to create an

application level fragment consisting of the actors created and messages sent when ad is executed

on node, N , in some configuration. The fragment is independent of the node and configuration

up to choice of new actor addresses. No acknowledgement is required for a remote creation

request. If the requester needs to know if the request has been met, or names of some of the

newly created actors, then this can be arranged by specifying appropriate messages as part of the

requested fragment, and observing their delivery. This technique is illustrated in the Migration

and Service Replication Behavior specification described in the following subsections.

Compiler transformations can be used to enhance the performance of remote creation. Ef-

fective compiler transformation techniques have been suggested to eliminate creation of some
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Figure 2.4: Using the Remote Creation Core Service - to build replication and migration

services.

types of actors and to change messages sent to actors on the same processor into function calls.

For instance, the time taken for remote actor creation varies considerably as it is dependent

on processor load and network traffic. Hence, in platforms where hardware context switching

is available, it is desirable to implement a technique called split-phase remote creation [?].

Here, the processor requesting remote creation context switches to another thread from the one

requesting the remote creation effectively hiding latency and improving processor utilization.

This approach is however not suitable on platforms where context switch is expensive. Another

approach to hide remote creation latency is to define an alias or local clone for the actor request-

ing remote creation. The alias returns a handle representing the newly created remote actor

to the actor requesting remote creation which then proceeds with the rest of its computation.

The alias then handles the remote creation process independently. The significant cost differ-

ence between local and remote message sends presents another opportunity for optimization.

Assigning higher priority to processing local messages will simplify message queue management

and reduce the cost of message scheduling.

In the following section, we describe in detail two uses of the remote creation core service

to provide higher level facilities – actor migration and service replication (as illustrated in

Figure 2.4).
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2.3.1 Migration - Using the Remote Creation Core Service

Migration is the process by which actors and their associated address spaces move from one node

to another. The migration service allows for relocation of actors for easier access, availability

and load balancing. In this section, we first provide the specification of a generalized migration

service. We then give a behavioral specification of the migration service using the remote

creation service specification of the previous section. We also expose some high level invariants

that one class of implementations of the service might rely upon. This also provides a basis for

expressing properties of interaction of the migration system with other system level services.

2.3.1.1 Migration Service

A migration request is given by a pair (α, ν) where α ∈ Actb is the actor to be migrated, and ν

the destination node. This is interpreted as a request to move the computation carried out by α

to the node ν. In order to state explicitly invariants maintained by the system during the migra-

tion process, we classify the migration process into 3 phases wrt the actor being migrated and

the node to which it is being migrated. The first phase, C0, is the initiation phase and specifies

the state of the system when the migration request received can be processed. It determines

the computation to be migrated by suspending the computation of the actor and noting its

current description. In the second configuration, C1, the actual actor migration is performed.

The final configuration, C2, finalizes the migration process and establishes transparent access

to the migrated actor. The system progresses from C0 to C1 to C2.

2.3.1.2 Migration Behavior based on Remote Creation Service

Migration behavior is specified by assigning to each node a migration system on that node that

handles migration requests for actors on that node. A remote creation service accessed via a

remote creation request rcRequest is used to install the migrating actors state on the remote

node. The remote creation request also includes a message to be sent to the original node
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Figure 2.5: Stages of Migration

containing the address of the newly created actor. To avoid confusion with other messages to

the migrating actor, α, a temporary actor αs is created to receive this message.

The specification of the migration behavior based on the remote creation service refines the

3 stages of the service specification. When the migration system receives a request to migrate

an actor, MigRequest(α, ν), the following actions are executed by the migration mechanism.

The three ovals in Figure 2.5 depict the three stages of migration.

• Initiation Phase:

1. Create a surrogate actor αs on the original node to receive the newly created actor

address. The sole job of this surrogate is to receive the new address of the migrated

actor.

2. Replace the behavior of α by a queue.

3. The remote creation service registers to be notified when the surrogate actor αs

receives a message.
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4. Send a remote create message to the desired node with the description of the actor

configuration to be created and the surrogate actor address to which the remote

address must be sent.

• Remote Creation Phase: The remote creation is executed and α′ is created with the

desired behavior and α′ is sent to αs.

• Rerouting or Finalization Phase: The address of the newly created component is

delivered to the surrogate and this signals the migration service to complete migration.

The behavior of the original actor is changed to that of a forwarder, which forwards

pending and incoming message for α to α′.

2.3.2 Replication - Using the Remote Creation Core Service

Replication is an essential facility in distributed systems for multiple reasons -

• to reduce network traffic

• reduce latency of access and retrieval of remotely located information

• to increase availability and dependability of information.

In this section, we consider replication for dependability.

Dependability or the ability to maintain availability of system facilities in spite of software

or hardware failures is one of the important services in a distributed system. In this section, we

represent a composable, application-independent mechanism to guard against fail-stop failures

in a system by using replication. The replication protocol modeled here has been described

in [?], which introduces MAUD (Meta Architecture for Ultra Dependability). Based on the

degree of consistency desired by the application, replication can use one or more of the core

services. Firstly, replication can be implemented as state capture followed by remote creation

on a replica node using the captured state. Secondly, if distributed consistency constraints

are to be met, the remote creation phase can be preceded by a global snapshot that records a
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consistent state specified by the activity. Global snapshots are discussed in more detail in the

following section.

A server is an actor system with a single receptionist that expects a request for the service

along with a reply address. For the present we will assume that a server is not history sensitive

(has no internal state). To increase dependability, a service can be replicated. To do this,

several exact copies (replicas) of this service are created on different processing nodes in the

system. Any request to the service is rerouted to all the replicas by a distributor and responses

are intercepted by a collector. The first response received for a client (application actor’s)

request is returned and further responses from other replicas are ignored. In this way, there

is a high probability that the client process will receive a response to its request even if one

(or more) of the nodes fail. A replicated server is again a server (exactly one reply is sent in

response to each request), and replication does not change the functionality of a service.

One way of modelling dependability via replication in the two-level model is to define a

dependability subsystem in which there is a Replication Dependability Actor (RDA) on each

node. To replicate a service, a request is sent to an RDA containing the address of the service

actor to be replicated, and a list of nodes on which it is to be replicated. When such a request

is received, the RDA creates a collector actor C, and sends a request to the RDA actors on the

nodes in the list to create local replicas of the service using collector C. When the addresses of

the requested local replicas have all been sent to the initiating RDA, a distributor behavior is

created and installed in place of the service behavior. The behaviors of the distributor, collector,

and replicas are is described below. Figure 2.6 gives a picture of a replicated server.

• Distributor: The Distributor (called serveMQ in [?]) has as acquaintances the list of

replicas. It also has a generator of new identifiers. When a client request arrives, a new

identifier is generated and a message containing the identifier and the original request is

sent to each replica.

• Collector: The collector (called serveDispatcher in [?]) maintains a log of replies

received for each request, using the unique identifier associated with each request. When
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Figure 2.6: Dependability Protocol Layer: Using the remote creation service to design the

Dependability Protocol Layer
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a reply with identifier id is received from a replica, the collector looks to see if there is a

previous reply to the corresponding request. If not, the identifier and reply are logged and

the reply is sent on to the customer. Otherwise the reply is logged and discarded. Each

entry thus contains the number of replica responses received. When all replicas have sent

a response, the entry can be deleted from the response table.

• Replica: A replica consists of three actors: an actor with the same behavior as the

original server; a receiver; and a transmitter, that appears to the outside as a single

actor whose address is that of the receiver. The receiver receives messages containing an

identifier and a client request. When the server is ready for the next request, the receiver

sends the identifier and client address to the transmitter and sends the request with the

client’s address replaced by the transmitter address to the server actor. The receiver

then queues further requests from clients until the transmitter signals that the server

has replied to the current request. When the transmitter receives a reply, it signals the

receiver and sends a message containing the identifier, the reply, and the client address

to the collector. Thus the receiver/transmitter behave as pre/post processors of messages

to the server that make the request identifier transparent to the server.

2.4 The Distributed Snapshot Core Service

A generalization of the distributed snapshot mechanism can be used for a variety of applications

where some global aspect of the distributed system needs to be observed. For example, global

information about an actor subsystem is useful for distributed debugging or checkpointing a

distributed system. Global properties like the number of application-actors, number of messages

being processed and task queue sizes help in making runtime decisions like load balancing and

migration leading to efficient runtime management of a distributed system. To fully represent

the global state of the distributed system, we need a mechanism for recording the state of all

nodes including the portion of node state being communicated in the network channels [?].

As state information is accessible explicitly only in nodes, a snapshot mechanism must ensure
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that node state information in channels are recorded at some node in the system (possibly the

target node itself). In order to initiate snapshot recording on every node and force messages in

channels to reach a node, we need to be able to define protocols for message propagation giving

rise to the following kinds of waves:

• A wave that visits all nodes exactly once broadcasting specific information.

• A wave that traverses all links in the system exactly once forcing messages on channels

to reach nodes (where their state can be recorded) in the direction of its flow. This wave

may also propagate information to nodes.

The starting and finishing points of both waves, the propagation path and constraints on

message propagation must be well defined. Furthermore, termination must be signaled when

the wave is complete, i.e. when all nodes in the system have been visited or when all links in the

system have been traversed. This termination signal will also serve as a synchronization point

in the snapshot mechanism. Note that this generalizes the notions of wave and global snapshot

discussed in [?] where the snapshots explicitly do not account for information contained in

messages in transit.

We assume that the nodes in the network topology are ordered, such that it is possible to

designate a start node and a finish node. We also assume message order preservation (FIFO

assumption) over a single link, but not necessarily between any two nodes. The multi-cast

messages used are of two kinds: broadcast messages and bulldoze messages. There are two

types of bulldoze messages, forward and backward; every node has a set of forward bulldoze

neighbors and a set of backward bulldoze neighbors. Forward bulldoze messages are initiated

at the start node and propagate from every node to its respective forward neighbors. Backward

bulldoze messages are initiated at the finish node and propagate from every node to its respective

backward neighbors. Bulldoze messages traverse every pair of links in the network and, by the

FIFO assumption on links, force messages already in the network to be cleared along the

direction of the bulldoze. The propagation of a bulldoze message in a two-dimensional grid

forms a wave as illustrated in Figure 2.7.
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Figure 2.7: The Forward and Backward Bulldoze Wavefronts: The figure shows the forward

(FB) and backward bulldoze (BB) messages traversing through the network as a wavefront.

The FB messages are initiated at the start node and travel along Fpaths until they reach the

finish node. The BB messages are initiated at the finish node and travel along Bpaths until

they reach the start node.
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Figure 2.8: The Broadcast Wavefront: The figure shows the broadcast messages traversing

through the network as a wavefront. The broadcast messages are initiated at the start node

and travel along indicated route to every node in the network.

In the case of broadcast messages, every node has a set of broadcast neighbors. Broadcast

messages are initiated at the start node and propagate from every node to its respective broad-

cast neighbors. Broadcast messages reach every node in the system, but traverse only a subset

of the links and hence are less costly. The protocol for propagating a broadcast message in a

two-dimensional grid is illustrated in Figure 2.8.

The broadcast and bulldoze messages can be used along with appropriate actions to record

the necessary information in a distributed system. In the distributed GC algorithm, for example,

the snapshot waves were used to record a global acquaintance relation. Information collected

at each node may be processed in two ways:

• Locally recorded information is processed locally with further passes.

• Locally recorded information is reported to a centralized collection service that processes

the snapshot information.

A global snapshot root-actor in the entire system coordinates system wide actions like the

switching on/off of snapshots, initiation of the propagation waves and detection of termination.

It serves as the interface to any service that requests a snapshot. In addition, every node in

the system has a snapshot meta-actor that processes snapshot waves and records requested
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local information pertaining to the snapshot. In addition to the snapshot of the global state

on every node, one may require global information on the state of the channels, e.g. message

routing information, congestion along channels, network latencies, link failures etc. used to

make runtime decisions. This may be done via special monitors initiated to record channel

information.

Characterizing global properties of asynchronous distributed computation models is a diffi-

cult task. In the next chapter, we define a two level architecture using which we can determine

specifiable global properties of a system to make a number of runtime decisions. Note that

not all global information can be observed or recorded reliably: for example, global clocks and

network channel states. The representations we propose are useful in determining reasonable

approximations of these properties and using these approximations to prove related safety and

liveness properties of a distributed system.

2.4.1 Distributed Garbage Collection - Using the Snapshot Service

In this section, we illustrate how the snapshot service may be used to form the basis for a global

activity, distributed garbage collection. We present a non-halting garbage collection algorithm

for active objects in a distributed system [?, ?]. We describe a mechanism called HDGC

(hierarchical distributed garbage collection), suitable for systems of active objects distributed

across a network of nodes. Hierarchical organization provides for scalability. It partitions a

distributed system into smaller subsystems, which in turn may be further partitioned. The

topmost level of the hierarchy is the entire system and the lowermost level of the hierarchy has

a single node per subsystem.

An important advantage of our algorithm is that it is non-disruptive: it does not halt or

otherwise interfere with the ongoing computation process. A novel feature is the recording of

a GC-snapshot to obtain a consistent local and global view of the accessibility relation. The

algorithm is described in terms of the actor model. However, it is applicable to any language

supporting dynamic creation and reconfiguration of objects (passive or active), executed on a
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network with a global name space distributed across the nodes 1. The HDGC algorithm can

be adapted to a wide range of parallel architectures including fine, medium or large grained

MIMD machines, message passing, shared memory or distributed shared memory machines, or

networks of workstations. In this section, we present the conceptual aspects of the algorithm.

2.4.1.1 Notion of reachability in actor-based systems

Reachability is a fundamental concept in actor systems. It characterizes the potential for

communication of one actor with another. It is also the basis for memory management and

other resource management activities. In this section we give a definition of reachability that

takes into account the ability of an active object to become known by communicating its mail

address. Here we are concerned only with reachability of application level actors. We then

present an algorithm for marking objects that are reachable according to this definition.

In the actor model, the actor-level communication topology changes dynamically. Actor

identifiers may be communicated to an actor, and alternately, an actor may change its behavior

and lose an acquaintance. Furthermore, the ability of an “apparently unreachable” object to

send its mail address to a reachable object must also be considered. Our definition of reachable

in an actor-based system is derived from the work of Kafura et. al. [?]. The root set is a fixed

set of actors from which reachability is traced. At a given point in time, the acquaintances of

an actor are those actors whose address is ‘known’ by that actor, i.e. addresses occurring in

the behavior of the actor or in messages sent to the actor but not yet processed (undelivered

messages). It includes actors referenced in the current computation state of the system (envi-

ronment variables, control structures like stacks etc.). Similarly, an actor is considered busy or

enabled in a configuration if the busy status of its state indicates it is busy, or if there is an

undelivered message to that actor (since delivery sets the busy status to true).

In an actor computation, the transitive closure of the acquaintance relation starting from

the root set is not adequate to determine reachability. This is due to the fact that in systems

of active objects, such as actors, an apparently unreachable object may at some point commu-
1This memory architecture is often referred to as distributed shared memory
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Figure 2.9: Reachability in the Actor Model: Root actors A and G are permanently reachable.

Forward acquaintances of reachable actors - B and C, are also reachable. D and E can potentially

become reachable, hence they are marked reachable. H, F, I,J and K are garbage actors.

nicate its mail address to a reachable acquaintance thereby becoming reachable. Thus inverse

acquaintances must also be considered in determining reachability. The inverse-acquaintances

of an actor in a configuration are the actors that have that actor as an acquaintance in the

configuration. An actor is considered inactive in a configuration if it is not busy. It is perma-

nently inactive if it is inactive, and it is not connected to a busy actor via some chain of inverse

acquaintances. Figure 2.9 illustrates the notion of reachability in the presence of acquaintance

relationships, busy actors and root actors.

Using these informal notions, the set of reachable actors is defined inductively as the least

set such that:

• A root actor is a reachable actor.

• Every forward-acquaintance of a reachable actor is reachable.

• If an actor is reachable, then every inverse acquaintance of that actor which is not per-

manently inactive is reachable.
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An actor that is not reachable according to the above definition is garbage and resources allo-

cated to this actor can be reclaimed.

A GC snapshot of the system state determines a conservative approximation of the acquain-

tance relation. Two important properties of reachability for one level actor systems that make

this a safe criterion for garbage collection are: an unreachable actor never becomes reachable;

and the description of an unreachable actor can be replaced by a null behavior without changing

the observable behavior of the system.

2.4.1.2 Obtaining a Consistent Reachability Snapshot

A GC snapshot consists of acquaintance and active status information that determines a consis-

tent global view of the state of the system at start-of-GC time. Each node records, for each of

its actors, its GC-acquaintances, its GC-inverse-acquaintances, and whether or not it was active

at start-of-GC time. The GC-acquaintances of an actor are the current acquaintances, plus any

acquaintances in messages in the network prior to the start of actual garbage collection. This

is a safe approximation of the actors acquaintances, and insures that actors actually forgotten

by one actor but sent in messages during GC will not be lost. The GC-inverse-acquaintances

of an actor the set of actors having that actor as a GC-acquaintance. This information is used

to account for apparently unreachable actors that might communicate their mail addresses to

a reachable actor. The GC acquaintance information is used only for GC and can be discarded

when the GC for which it was created is complete. For a global snapshot of the state of the

system, we need to guarantee that both local consistency and global consistency have been

achieved. Every node in the system needs a point of reference in time with respect to which it

determines the accessibility or inaccessibility of actors in its memory. Once a node has estab-

lished this point and recorded the necessary information, we have attained local consistency.

Global consistency is a point in time when all participating nodes have agreed on a particular

state of the distributed system.

In order to determine which messages were in the network prior to the start of GC and

which entered after, ordinary messages are given tags to classify them as old or new messages.
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Old (resp. new) messages are messages which were created prior to (resp. after) the time of the

GC snapshot. When GC is initiated, all messages in the network are tagged old. During the

process of recording the GC snapshot, the network will be cleared of old messages by means of

the forward and backward bulldoze messages explained above.

To obtain the GC snapshot, first a pre-GC message is broadcast to every node in the system.

When a node receives the pre-GC broadcast message, it initializes the GC-acquaintances of

each actor residing on that node with (1) its current acquaintances and (2) all acquaintances

contained in messages currently residing in its mail queue. Any acquaintances contained in old

messages subsequently obtained from the network are added to the GC-acquaintances. It also

initializes GC-inverse-acquaintances to be empty. When the pre-GC broadcast is complete,

a pre-GC Fbulldoze message is initiated (by the finish-node that receives the final pre-GC

broadcast message). When the pre-GC Fbulldoze message passes a node, it marks as active

any objects with non-empty mailqueue. The active status of this node is retained for the

current GC even though the node may become inactive during GC. Any messages subsequently

communicated from that node are tagged new. The new tag on a message guarantees the

recipient of the message that any acquaintances communicated in the message have already

been accounted for. When the Fbulldoze message reaches the finish node a Bbulldoze message

is initiated. When the Bbulldoze message passes a node, this signals that the recording of

GC-acquaintances is complete. The node sends I-know-you messages from each of its actors to

each GC-acquaintance of that actor. When an I-know-you message from actor A to actor B is

received then actor A is added to the GC-inverse-acquaintances of actor B. A second forward

and backward bulldoze phase is required to clear the network of I-know-you messages. This is

initiated by the start node upon completion of the first backward bulldoze wave. When the

second forward/backward bulldoze wave is complete, the start node sends a pre-GC-complete

message to the root node. At this point, all old and I-know-you messages in the system have

been cleared from the network and the snapshot information is recorded.

The backward bulldoze messages are needed for both the recording of GC-acquaintances and

GC-inverse-acquaintances, since the forward bulldoze only clears forwards links and there may
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Figure 2.10: The Bulldoze Wavefront in Progress: The bulldoze wavefront is halfway through

the system. Although object A has started recording acquaintances and issues only new mes-

sages, it can receive old messages from object H which has not yet received the bulldoze wave.

be messages traversing backwards links that need to be recorded. To see this, note that after

an object, say A, has received the pre-GC Fbulldoze message it can send only new messages.

However, it may receive old messages from an actor H which has not yet received the pre-GC

Fbulldoze message (see Figure 2.10).

2.4.1.3 Using the Reachability Snapshot to Achieve Distributed Garbage Collec-

tion

Step 1: Pre-GC. In a system with distributed state there is no uniquely determined global

state. Thus to compute some property of the state it is generally necessary to determine a

global snapshot that determines a consistent view of the state. In the case of the acquaintance

relation for an actor system, the problem of obtaining a consistent global snapshot involves an

additional subtilty. The asynchrony of communication together with the ability to communicate

acquaintances means that at any given time, there can be communications in the network

whose acquaintances are no longer acquaintances of the sender, and not yet acquaintances of

the receiver. This means that before a snapshot of the acquaintance relation can be taken, the

network must be cleared of such communications. During the pre-GC step each node is notified
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that a GC has been initiated, and the network is cleared of messages in transit at the time

GC was initiate. This defines a local start-of-GC time on each node that is globally consistent.

Each node records GC information relative to its start-of-GC time that will persist throughout

the duration of the GC. The combined local information forms a consistent global snapshot of

the system state that is adequate to determine the reachability of each actor in the system. We

call this the GC snapshot . A detailed description of the information recorded and the process

of recording the GC snapshot is presented in Chapter 5.

Step 2: The Distributed Scavenge Phase. During this step, actors that are non-garbage

relative to the GC snapshot are marked touched. We use the definition of reachability in actors

to determine non-garbage and develop a distributed scavenge algorithm for marking non-garbage

actors [?].

Step 3: Local-Clear Initiation. Each node in the system is informed that the distributed

scavenge phase has completed and local clearance begins. On each node, objects not marked

touched are cleared from local memory, according to a local memory management on a node,

and any other actions (updating receptionist tables, etc.) entailed by this reclamation are

carried out.

Step 4: Local-Clear Phase. This step detects when all nodes have completed the local

clearance initiated in the previous step.

Step 5: Post GC Broadcasts. This step informs each node that the current GC is complete:

each node can now note that GC is no longer in progress and update necessary information to

reflect this state. At the end of this step a new GC can be initiated at anytime.
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2.5 The Directory Core Service

Name services in distributed systems provide a mechanism for identifying objects and locating

them. Using a flexible naming scheme offers support for transparent heterogeneity where objects

are transparent to the details of the underlying architecture. In the ActorSpace model [?],

extensions to naming schemes provide flexible coordination patterns. Similarly, with naming as

a basis, we can define complex interaction patterns and security mechanisms. In the following

section, we discuss one extension of a naming facility – access control.

2.5.1 Security and Authorization - Using the Directory Core Service

In this section, we discuss the representation of a protection mechanism that maintains the

integrity of information represented or stored within the system. Enforcement of security con-

straints is critical in a distributed system, where multiple users have the ability to access and

manipulate remote information. Note that system security is built upon the assumption of sys-

tem dependability, i.e underlying hardware failures may jeopardize the integrity of the system.

2.5.1.1 A model of security

We assume an actor(object)-centric model of security. An actor holds the power to grant specific

authorities to other actors. This defines who can access the actor and in what way. We will use

capabilities as the mechanism used to implement access control. A capability is a representation

of the access control policy in a system. Access to objects is based on the ownership and

presentation of capabilities. As the ownership of a capability controls access to actors in a

system, creation of capabilities must be localized. Capabilities are created on behalf of the

accessee actor and then communicated to other actors using a specified policy. A capability has

two components (see Fig 2.11): (1) a unique actor address that identifies the actor on which

the access is attempted and (2) an encoding of the access rights allowed by an actor holding

this capability. The actor specified within a capability is the owner of the capability.

There are three operations that may be performed on capabilities:
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• Granting capabilities

• Verifying capabilities

• Revoking capabilities

Granting a capability is initiated by the actor that owns the capability. The owner of a capability

communicates the capability to one or more of its acquaintances (who can send a message to

the actor). If capabilities are designed to be first class objects, they may be communicated

in messages to the acquaintances of an actor along with actor addresses. Every message in

the system is tagged with a capability. Access verification is performed dynamically when the

message is processed at its target. If the capability on the message is validated by the receiver,

the message is processed, else it is rejected.

In an actor based system with first-class capabilities, revocation of capabilities introduces

further complications. In this scenario, it is possible for an actor to receive a revoked capability

from one of its inverse acquaintances. Say an actor A is the owner of a capability Cap. A

grants the capability Cap to its acquaintances B and C who communicate Cap in turn to their

acquaintances. If A revokes capability Cap from B, there is no guarantee that B will not

re-receive Cap from another of its inverse acquaintances at some later point in time.

However, if capabilities are not first class objects, the security mechanism may be tailored to

allow revocation of capabilities. A restricted security mechanism would suffice for applications

like database systems with a small class of operations (update and select). The choice of the

capability mechanism therefore depends on the tradeoff between flexibility and control desired.

2.5.1.2 Representing access control using the directory service

We introduce the notion of a security actor that is responsible for access control decisions of a

base-actor or a group of application-actors. Implementation of an exclusive security actor per

application-actor is both expensive and unnecessary for most applications. Let us assume that

there is a single security actor per node responsible for authenticating access to all application

actors on that node.
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Let us first consider the representation of capabilities as first class objects in the actor

system. Here, the programmer of the actor system allocates capabilities and passes them

around. The maintenance of system integrity is the responsibility of the programmer who is

allowed to hand capabilities to base-actors. In this case the security actor is only responsible for

verifying that messages to an actor on that node have the appropriate capabilities. Outgoing

messages may be tagged with capabilities, if required, by the user.

Alternately, the capability mechanism may be maintained strictly as a system-level feature.

In this case, capabilities given to an actor are recorded by the security actor on that node.

Capabilities are only granted and revoked and they may not be communicated from an actor

to its acquaintances. Insertion of capabilities into the outgoing message is done exclusively

by the security controller (meta-actor) on that node. This causes some limitations in the

actor model where mail addresses may be communicated dynamically. A mechanism must now

be implemented to define access rights to the new inverse acquaintance of an actor or allow

delegation of authorities. As before, an incoming message is tagged with a capability and

authentication checks are performed before dispatching the message to its destination base-

actor. The security controller on a node has 2 tasks to perform:

• It verifies that messages to an actor on the node have necessary capabilities

• It maintains capabilities associated with every object on the node in a capability table and

tags outgoing messages with appropriate capabilities.

Figure 2.11 illustrates the capability table on a node that maps the actors on a node to the

capabilities that they possess. Any outgoing message is tagged with an appropriate capability

by the security actor on a node. Similarly, an incoming message is validated by the security

actor before it reaches the actor that processes the message via notifications.

Using this basic security facility, it is possible to implement a variety of authentication

policies. For example, a group based access policy may be enforced within the security actor

that validates messages from users that belong to a certain group.
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Figure 2.11: Security using Directory Services

Integration of system security with other runtime activities is critical with the increasing

demand for open systems. Static authentication mechanisms are no longer sufficient to guaran-

tee security in a dynamic and heterogeneous environment with varying protection requirements.

The capability model described represents just one level of user security. An extended protec-

tion model would require the integration of multiple security mechanisms for ensuring network

security and encryption facilities. Composition of different security schemes can be represented

in the meta-architectural framework (described in the next chapter), by layering the security

subsystem, with each layer implementing different granularities of security. Furthermore, the

motivation for combining different runtime policies to generate dependable, secure systems re-

quires us to reason about fault-tolerance and authorization in a unified framework and analyze

their interaction.

2.6 Composing Services

A wide range of protocols and activities must be composed to implement end-to-end dis-

tributed application management. These protocols and activities must execute concurrently,

non-disruptively and share the same resources. Problems with distribution and composition
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include resource conflicts, deadlocks, inconsistencies and divergence resulting in incorrect exe-

cution semantics. The underlying resource management system must ensure that the simulta-

neous system activities compose in a correct manner. The difficulty in reasoning about system

level interaction is due to the complexity of characterizing the semantics of shared resources

and specifying what correctness of the overall system means. In addition, the presence of

user-specified QoS criteria that may need to be satisfied further complicates the allocation and

management of resources.

Consider the following example. An interesting situation arises if migration is permitted

in a distributed system. If a distributed snapshot is taken concurrently with migration, then

the snapshot process may lose information, or possibly never terminate. Therefore, a request

for a global snapshot must inform every node in the system of the request for a snapshot.

All the nodes in the system must cooperate to (1) not initiate any new migrations (2) detect

the completion of any occurring migration. The broadcast wave described earlier can be used

to inform the nodes about the snapshot request and detect the completion of any ongoing

migrations. Once migration has been turned off, the distributed snapshot is taken. All nodes

in the system are subsequently notified of the snapshot termination and migration is turned on

again.

Our long-term goal is to develop a library of core services and tools that will allow a wide

variety of protocols and aspects of execution behavior to be composed in a simple manner.

For instance, a number of languages and systems offer support for constructing fault tolerant

systems. However most do not support the factorization of fault tolerance characteristics from

the application specific code. Similarly developing systematic means of describing and ensur-

ing synchronization constraints on interactions between system components can be complex.

High level language constructs for expressing such constraints include synchronizers and activa-

tors [?]. By providing frameworks that permit resource management mechanisms and policies

to be attached and detached dynamically, we allow the composition of multiple meta-activities

such as check-pointing, fault tolerance protocols and synchronization without requiring that

the representation of one mechanism knows about the other.
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Chapter 3

MetaArchitectures for Distributed

Resource Management

In this chapter, we present a two-level model of distributed computation based on actors. This

model is the basis for developing a semantic framework that supports dynamic customizability

and separation of concerns in designing and reasoning about components of open distributed

systems (ODS). In particular, we would like to be able to consider separately issues such as:

functional behavior of an application; failure semantics and fault tolerance protocols; and re-

source management issues such as memory management, load balancing, and scheduling.

3.1 The Two Level Approach

Open distributed systems should provide strong support for customization and adaptation.

Non-reflective systems which support customization do so only on a static basis. In an object-

oriented system such as Choices [?], or Spring [?], frameworks may be customized for a particular

application. However, once customized, the characteristics may not change dynamically. Tradi-

tional reflective systems aim at providing customizable and adaptable execution of concurrent

systems. For example, the scheduling problem of the Time Warp algorithm for parallel discrete

event simulation is modeled by means of reflection in [?]. A reflective implementation of object
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migration is reported in [?]. Reflection has been used in the Muse Operating System [?] for

dynamically modifying the system behavior.

Reflection also underlies recent work in language and system design that supports cus-

tomization and separation of design concerns [?, ?]. Representation of dependability protocols

as meta-level programs is presented in [?]. Some of the more recent research on actors has

focused on coordination structures and meta-architectures [?, ?, ?]. The Aspect Oriented Pro-

gramming paradigm [?] makes it possible to express programs where design decisions(aspects)

can be appropriately isolated permitting composition and re-use of the aspect code.

Many of these languages or systems lack clearly defined semantics. The TLAM (Two Level

Actor Machine) model is a first step towards providing a formal semantics for such languages,

and a basis for specifying and reasoning about properties of and interactions between com-

ponents of such systems. A preliminary version of this model was presented in [?, ?]. In [?]

the notion of abstract actor structure as a framework for high-level, programming language

independent, specification of individual actor behaviors is developed. This is just the TLAM

two-level actor structure notion restricted to purely base-level systems.

In the TLAM, a system is composed of two kinds of actors, base actors and meta actors,

distributed over a network of processing nodes. Base level actors carry out application level

computation, while meta-actors are part of the runtime system which manages system resources

and controls the runtime behavior of the base level. The application level of the model refines

the model of [?, ?], explicitly representing more of the runtime structures and resources. It also

abstracts from the choice of a specific programming language or system architecture, providing

a framework for reasoning about heterogeneous systems. Meta-actors communicate with each

other via message passing as do base level actors, but they may also examine and modify the

state of the base actors located on the same node.

The multi-model reflective framework (MMRF) for distributed object computation [?] has

many of the same motivations and objectives as the TLAM framework. We briefly compare the

two approaches. In MMRF an object is represented by multiple models allowing behavior to
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be described at different levels of abstraction and from different points of view. In each model

the behavior of an object is described by a meta object for that model and each meta object

sees and acts on only one base level object. In the TLAM the actor representation is left quite

abstract for the present. Each meta actor can examine and modify the behavior of a group

of base level actors – namely those located on the same node. Some instances of the TLAM

may have the many-to-one organization of MMRF, but that is not the only possibility. The

more flexible relation seems appropriate when considering facilities that involve manipulation

of collections of base level actors. Both MMRF and TLAM use reification (base object state as

data at the meta object level) and reflection (modification of base object state by meta objects).

Both have implicit invocation of meta objects in response to changes of base level state. This

provides for debugging, monitoring, and other hooks. In the case of MMRF it is the only

means of interaction between meta level objects associated to the same base object. MMRF

provides for explicit invocation of meta objects by associated base objects. TLAM provides for

full actor-style interaction of meta level objects, but not (yet) for invocation of meta objects

by base objects. A language, AL-1/D, based on MMRF has been implemented however there

has been no work on specifying a formal semantics. In the TLAM effort we have concentrated

on defining a rigorous mathematical semantics and on using this semantics to develop concepts

and methods for expressing and reasoning about properties of ODS and their components.

Because actors are history sensitive, there is potential for interference between actors with a

common acquaintance. There is also the additional possibility for interference between base and

meta level actors on the same node. A third possibility of interference is between meta actors

implementing different services and thus modifying base level actors in possibly incompatible

ways. Thus, standard safety and liveness properties are not adequate to specify components

of ODS. Non-interference properties must also be specified and checked. Similar observations

have been made for traditional one level systems. For example, in [?] Abadi and Lamport give

a method for describing open components of concurrent systems using assumption/guarantee

assertions [?]. Assumptions are requirements on the components environment. Here we consider
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object based systems and have the additional important problem of ensuring that meta-level

activities do not have unintended effects on the base level semantics. Note that making non-

interference properties explicit is a means of making specifications modular and composable.

To manage the complexity of reasoning about components of ODS, our strategy is to identify

key basic services provided by meta-actors where non-trivial base-meta interactions occur. With

these basic services identified and specified, more complex services can be specified in terms

of purely meta-level interactions, which are better understood, although still non-trivial. The

basic idea follows principles of program development based on use of high level abstractions that

hide much of the implementation complexity. Recent work applying these ideas to distributed

computing includes [?] where programming tools, each with associated proof rules for reasoning

about, them are proposed. What is new in our work is the application of these ideas to two

level systems.

In this thesis, we consider two examples of basic services with non-trivial base-meta in-

teractions: remote creation and reachability snapshot. The remote creation service allows a

meta actor to effectively create a base level subsystem on a remote node. Remote creation

can be used as the basis for services such as migration and replication in a distributed system.

The reachability snapshot service provides the capability to record a snapshot of the base level

reachability relation. This relation determines which actors can potentially be accessed and

affect the observed system behavior. The TLAM model can be used to show that a reachability

snapshot is a safe criterion to be used for garbage collection. Thus the reachability snapshot

service can be used as the basis for design, implementation, and verification of a distributed

garbage collection service (cf. [?, ?]). The reachability snapshot specializes the notion of global

snapshot of a distributed computation which is an important tool for distributed programming

(cf. [?, ?]). Reachability allows us to illustrate some of the issues that arise in reasoning about

object based systems where object identity is a fundamental concept.

We have tried to specify useful services, however the point of the examples is not to propose

standards, but to illustrate some of the kinds of properties, requirements and interactions that
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we imagine will arise in practice and to take the first step in developing methods for specifying

and reasoning about concurrent services. To illustrate the use of such specifications, we show

how the remote creation service specifications can be used to develop and refine a migration

service specification. To illustrate combination by co-existence we identify sufficient conditions

to permit migration and reachability snapshot services to co-exist and act concurrently in a sys-

tem. We also show how the non-interference requirements allow us to reason about composition

of migration and reachability snapshot services.

Here we give two forms of specification for each service X. The first gives conditions under

which a TLAM system is said to provide an X service, with respect to a function for creating

request messages and possibly other parameters. The second gives conditions under which a

TLAM system is said to have an X behavior with respect to a set of meta-actors and possibly

additional parameters. The property of having an X behavior is linked to the property of

providing an X service by defining a service request function in terms of the parameters of the

behavior specification and showing that a system having X behavior provides the X service

with respect to the defined request function.

Each form of specification itself may be refined in various ways. One form of refinement

articulates non-interference requirements, still at a fairly abstract level. Such refinements gener-

ally correspond to design decisions related to the choice of a class of algorithms for implementing

the service. Another level of specification is the notion of a group of actors providing a service.

This moves from specification in terms of global system behavior to specifications of individ-

ual actors or collections of actors. Thus refinement of specifications provides another form of

modularity and scalability, by reducing the task of implementation to that of implementing

individual abstract behaviors.

Our various levels of abstraction include levels similar in spirit to the three abstraction

levels identified in the OSI reference model and proposed to strengthen the enterprise level of

the ODP Reference Model in [?]. These levels are: the combined behavior of a system and its
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environment (service); the role of the system in this combined behavior (service provider); and

the decomposition of this role (protocol).

Our work is unique in the use of the two-level framework as a formal semantic foundation

for specifying and reasoning about applications, system level services, and their interactions in

a common framework.

3.1.1 Other Related Work

A number of language independent formalisms have been developed for specifying and reasoning

about concurrent systems. These include formalisms based on temporal logic [?, ?, ?], behavior

histories [?], and I/O automata [?]. These formalisms provide a general framework for specifying

safety and liveness properties and a means of organizing proofs. They have been used to specify

and verify a variety of protocols. One difficulty with existing formalisms is that components

are not represented as objects of the formalisms, rather as instances – signatures and formulae.

Thus they do not address issues such as equivalence and transformations.

The Unity language [?] is a notation for describing systems, the focus of this work has been

methods for program specification and development of proof rules that support reasoning about

these specifications and their relations. The underlying semantic model is a state transition

system. Unity is limited by the fact that there is no support for system decomposition or for

talking about interactions of system components with one another or with the environment

except via effects on shared global variables. Also since there is no distinction between system

and application activities, programs must be transformed to implement additional services and

protocols.

Our work on meta-architectures for ODS has been motivated by various work in the areas

of programming language and system design, and distributed algorithms some of which is

mentioned in the previous subsection. The work described in this dissertation has concentrated

on developing a semantic framework and concepts for reasoning about ODS using ordinary
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informal, but rigorous mathematics. Choosing or developing formal notations, proof systems,

or logics is outside the scope of this work, although of great interest as a topic of future work.

In this chapter, we only give informal definitions of the structures and concepts introduced.

A more rigorous specification and semantics for the TLAM that provides precise mathematical

definitions is discussed in the appendix (See Appendix ??). We try to use standard notation

for sets, sequences and functions. Our notational conventions are described in detail in the

appendix.

3.2 The TLAM Model - A Summary

In this section, we provide a brief summary of the TLAM model sufficient to understand the

examples described in this thesis. A full description is given in the appendix.

3.2.1 TLAM Structure

A two-level actor machine (TLAM) consists of a two level actor structure (TLAS) distributed

over a network of processor nodes and communication links. There is no shared global memory

and no global clock.

A TLAS provides an abstract characterization of actor identity, state, communications, and

computation, and of the connection between base and meta level computation. Base level actors

and messages have associated runtime annotations that can be set and read by meta actors, but

are invisible to base level computation. Actions which result in a change of base-level state are

called events. In the TLAM, there are two kinds of events: delivery of a message to an actor, and

local computation by an actor. In addition to changing the actors local state, local computation

may result in creation of new actors, or sending of new messages. The TLAM event handling

mechanism allows meta-actors to react to base-level events. This provides a flexible mechanism

for interaction of meta-actors with the built-in runtime system. It also provides a clean way for

specifying, reasoning about and designing daemons, monitors and similar facilities.

In more detail, a TLAS is a structure consisting of
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• Sets:

◦ Act , Val, Msg, Ad .

• Basic functions and relations:

◦ level , ren, busy , acq , tgt , cnt ,

◦ enableddel, deliver , getA, setA; and

• Interpreters:

◦ Evb , Evm , Eveh .

3.2.1.1 Sets

• Act is the set of actor identifiers. We let α range over Act (and by our meta-variable

convention, see the appendix for details, α0, α
′ also range over Act). Each actor in a

system has a unique identifier, by which it can be known to other actors.

• Val is the set of values that may be communicated in messages. Val includes Act and

we let v range over Val.

• Msg is the set of messages that actors may use to communicate with one another.

• Ad is the set of actor descriptions. An element ad of Ad describes the local state of

an individual actor, and together with the interpreter functions, specifies the effects of

an actor in this state executing a step. A description includes information traditionally

contained in script or methods, contents of local or instance variables, and the local mail

queue. In the case of meta actors, the description also specifies event handling actions.

3.2.1.2 Basic Functions and Relations

• level partitions identifiers, values, messages, and descriptions into base and meta levels.

We write Actb for the set of base level identifiers and Actm for the set of meta level

identifiers. A similar convention is used for other partitioned sets.
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• ren(ρ, x) extends the bijection, ρ, on actor identifiers to descriptions, values, messages

and other entities. This allows us to formalize the fact that the interpretation of actor

descriptions is uniformly parameterized by the choice of identifiers for acquaintances. In

particular, local creation of new actors can be described locally, by choosing locally new

identifiers. Renaming is used to avoid name conflict when adding new actors to a system.

• busy(x) returns true if the actor is currently busy and false otherwise. Being busy indicates

that an actor is enabled for an execution step and could potentially send messages or

create new actors without delivery of additional messages. For example, if the actor has

not finished processing previously delivered messaged.

• acq(x) is the (finite) set of acquaintances of (actor identifiers occurring in) a value or

description x. The acquaintance function lifts homomorphically to structures built from

actors, values and descriptions.

• tgt(m) is the identifier of the target actor (receiver) of the message m.

• cnt(m) is the contents (a communicable value) of the message m. We write Msgαv for

a meesage with target α and contents v .

• The test enableddel(ad) determines if the actor description, ad , is enabled for delivery of

a message.

• deliver(ad , v) is the description resulting from delivery of a message with contents v to

the description ad . Message delivery preserves level and after delivery a description is

busy.

• Base level messages and descriptions may be annotated. Each annotation has a unique

associated tag. Tags are just values that have no occurrences of actor identifiers, and

annotation values are any value. getA(ad ,Tag) is the annotation of ad associated with

tag Tag .
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Figure 3.1: Interpreters - Base, Meta, Event. Actor configurations represent the combined

state of a group of actors.

• setA(ad ,Tag , v) sets the annotation of ad associated with Tag to v . Message annotations

can be similarly accessed and set.

3.2.1.3 Interpreters

To explain the interpreters we introduce the notion of actor configuration. An actor configura-

tion represents the combined state of a group of actors, from some point of view. It is a finite,

level preserving, map (notation ac) from identifiers to descriptions. A base level actor config-

uration is one whose domain consists of base level identifiers. Evb and Evm are the base and

meta level interpreters, and Eveh is the event handling interpreter for meta level descriptions.

Figure 3.1 indicates how the 3 different interpreters in the TLAM relate to each other.

• Base Level Interpreter: Evb(α : ad) specifies the effects of a (base level) actor α with

local state ad executing a computation step. In particular it specifies: a description (not

necessarily different) ad ′ of α after the step; a base level actor configuration, ac, (possibly
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empty) describing the newly created actors; and a set, M , of messages sent. We say

that upon execution ad becomes ad ′, ad creates actors, ac, and sends messages, M . The

acquaintances of ad ′ and of the new actors and messages and the targets of the new

messages are constrained to obey the locality laws discussed in Section 2.1.1.

• Meta Level Interpreter: Evm(α : ad)(ac) specifies the effects of (meta level) actor α

with local state described by ad and access to base level actor configuration ac executing

a step. In addition to specifying meta level effects analogous to those for base level

execution, modifications to the base level actors in ac, and newly created base level

actors and messages may be specified. A base level creator, possibly located on another

node, must be specified for each newly created base level actor and a base level sender

must be specified for each new base level message. This allows one to view the base level

effects of a meta level transition as an extended form of base level transition.

• Event Handling Interpreter: Eveh(α:ad)(ac, event) specifies the effects of (meta level)

actor α with local state described by ad and access to base level actor configuration ac in

response to the event event . The meta level effects are the same as for execution steps.

The only allowed base level effects are the modification of annotations of actors in ac.

The event may be the delivery of a message to an actor in ac or the base level effects of

an execution step. Meta-level transitions are constrained to obey two-level acquaintance

laws (See Appendix ??).

Some Simple TLAS Examples

Definition 1 (Sinks)

A base actor description, ad , is a sink if deliver(ad ,m) is a sink, and Evb(α, ad ,new) returns

a sink actor configuration, no changes, no new actors or messages, where ac(α) is a sink, for

any base actor α, any appropriate allocation function new , and any (base level) message m.

Definition 2 (Forwarder)

Consider a base level system with a base level factory actor, f , whose state is described by
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F and a meta level actor mf , whose state is described by MF . When a request from customer

c is received by f , it creates a new actor, d, with initial description D and sends its name to c.

mf : MF reacts to the creation event by creating a new meta actor, say md , with description

MD [d, ?, 0, ∅]. md creates a backup for d : D and sends copies of all messages received by d to

the backup. The ? is a placeholder for the name of the backup actor to be created. To preserve

arrival order, the copies are paired with a number, initially ), indicating the arrival rank at

d of the message. Since md can not directly send messages to the backup when it is notified

of a message delivery to d it must simply remember these and send the accumulated backup

messages during its own execution steps. The final parameter of MD is the accumulated set of

backup messages, initially empty. The interpreters for these actor descriptions are given by the

following equations.

Evb(f : deliver(F, c))([d]) = ac[f, d, c]

where ac[f, d, c] = f : F, d : D,Msgcd

Eveh(mf : MF )(ac[f, d, c])([md ]) = ac[f, d, c],mf : MF ,md : MD [d, ?, 0, ∅]

Evm(md : MD [d, ?, j,X])([d′]) = md : MD [d, d′, j,X], d′ : D′[0]

Eveh(md : MD [d, x, j, X))(Msgdm) = md : MD [d, x, j + 1, X + <j,m>]

Evm(md : MD [d, d′, j,X]) = md : MD [d, d′, j, ∅],Msgd′X

3.2.2 Network and Distribution

The network underlying a TLAM is a graph consisting of a set, Node, of processor nodes, and

a set, Link, of directed links (one way communication channels) between nodes. The two level

actor structure is distributed over the network by a function loc that maps actor identifiers to

nodes.
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This formulation of the TLAM structure emphasizes a systemwide view of configurations

which is convenient for technical reasons. It is easy to give an equivalent formulation and

distribution emphasizing local (per node) view.

3.2.3 TLAM Semantics

TLAM semantics is given by a labeled transition system, <Cfig ,Lab,Trans>, which is deter-

mined by the TLAS and its distribution over the network. Cfig is the set of configurations

(global states), Lab is a set of labels, and

Trans ⊂ Cfig × Lab × Cfig is a labelled transition relation.

Configurations

A configuration, C , has three components. lc(C ) is a link configuration associating to each

communication link a sequence of undelivered messages enroute along that link. nq(C ) is a

node buffer configuration associating to each node a sequence of undelivered messages buffered

at that node. The third component ca(C ) is the set of actor configuration maps. ac(C ) is an

actor configuration – a level preserving finite map from identifiers to descriptions. If actor α

is in the domain of this map, then ac(C , α) is the local state of α in the configuration. We

write Cast(C ) for the domain of ac(C ) and we require that all actor identifiers occurring in C

belong to Cast(C ).

Undelivered Messages

Undel(C ) is the set of undelivered messages in C , i.e. messages in the links or node mail buffers.

Undel(C ) =
⋃

γ∈Link

lc(C )(γ) ∪
⋃

ν∈Node

nq(C )(ν)

Undel(C , α) = {m ∈ Undel(C ) tgt(m) = α}

We extend functions on actor descriptions to configuration-actor pairs by first extracting

the description of the actor from the configuration.

busy(C , α) = busy(ac(C , α)) if α ∈ Dom(ca(C ))
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acq(C , α) = acq(ac(C , α)) if α ∈ Dom(ca(C ))

getA(C , α,Tag) = getA(ac(C , α),Tag) if α ∈ Dom(ca(C ))

setA(C , α,Tag , v) = setA(ac(C , α),Tag , v) if α ∈ Dom(ca(C ))

The restriction, C/b, of a configuration, C , to the base level is given by the following:

• lc(C/b)(γ) is the result of deleting all meta level messages from lc(C )(γ);

• nq(C/b)(ν) is the result of deleting all meta level messages from nq(C )(ν); and

• ac(C/b) is the restriction of ac(C ) to base level actors.

Transitions

There are two kinds of transitions: communication and execution.

• A communication transition with label l = l2n(γ, ν) moves a message from a link γ to

its target node ν. A communication transition with label l = n2l(ν, γ) moves a message

from a node ν to a connected link γ. A communication transition with label l = del(ν)

moves a message from a node ν to a target actor located on that node, if the actor is

enabled for delivery, or to the end of the queue if the actor is not enabled for delivery.

• An execution transition with l = exe(()αF ) is a computation step taken by a base or

meta level actor, αF , called the focus actor . The resulting configuration is obtained using

the effects specified by the appropriate interpreter, using the focus actors current state,

and in the case of a meta level transition, the configuration of base actors located on the

focus actors node. Newly created actors are located on the focus actors node and newly

sent messages are placed, in some order, at the end of the queue of undelivered messages

of the focus actors node.

Events: A transition in which the base level system state on a node is modified (via delivery,

creation, or sending) is called an event. After each event and before any other transition, each

co-located meta level actor is notified and the configuration is further modified according to
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